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Abstract

Budzynski and Kondracki [Rep. Math. Phys. 37 (1996) 365] have introduced a notion of locally
trivial quantum principal fibre bundle making use of an algebraic notion of covering, which allows
a reconstruction of the bundle from local pieces. Following this approach, we construct covariant
differential algebras and connections on locally trivial quantum principal fibre bundles by gluing
together such locally given geometric objects. We also consider covariant derivatives, connection
forms, curvatures and curvature forms and explore the relations between these notions. As an
example, &/ (1) quantum principal bundle over a glued quantum sphere as well as a connection in
this bundle is constructed. The connection may be considered-as@sion of a Dirac monopole.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the appearance of quantum groups there has been a hope that it should be possible
to use them instead of the classical symmetry groups of physical theories, in particular

* Corresponding author. Present address: Institut fir Theoretische Physik der Universitat Leipzig, Augustusplatz
10/11, D-04109 Leipzig, Germany. Tek49-341-9732431; fax+49-341-9372548.
E-mail addressesdirk.calow@itp.uni-leipzig.de, calow@vtst.tu-freiberg.de (D. Calow), rainer.matthes@itp.
uni-leipzig.de (R. Matthes).

1 supported by Deutsche Forschungsgemeinschaft.

2 Partially supported by Sachsisches Staatsministerium fiir Wissenschaft und Kunst.

0393-0440/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
PI: S0393-0440(01)00050-X



D. Calow, R. Matthes/Journal of Geometry and Physics 41 (2002) 114-165 115

for quantum field theories. It was expected that the greater variety of group-like structures
should lead, perhaps, to greater flexibility in the formulation of physical theories, thereby
paving the way to a better understanding of fundamental problems of quantum theory and
gravitation.

In (Lagrangian) quantum field theory, symmetry groups can be considered to appear in
a very natural geometrical scheme. They are structure groups of principal fibre bundles.
Moreover, on the classical level, all fields are geometrical objects living on the principal
bundle or on associated fibre bundles. Thus, it is natural to ask for a generalization of
the notion of principal bundle to a noncommutative situation. Thereby, in order to avoid
unnecessary restrictions, one should replace not only the structure group by a quantum
group, but also the base manifold (space—time) by a noncommutative space, which may
even be necessary for physical reasons (see [9,10,13,15]).

Inrecent years, there have been several attempts to define such quantum principal bundles
and the usual geometric objects that are needed to formulate gauge field theories onthem, see
[2,4,11,12,14,18,20,22,24]. Roughly following the same idea (“reversing the arrows”), the
approaches differ in the details of the definitions. Closest to the classical idea that a locally
trivial bundle should be imagined as being glued together from trivial pieces is the definition
given in [4]. There, one starts with the notion of a covering of a quantum space. Being in
the context ofC*-algebras, a covering is defined to be a (finite) family of closed ideals with
zero intersection, which is easily seen to correspond to finite coverings by closed sets in the
commutative case&”*-algebras which have such a covering can be reconstructed from their
“restriction” to the elements of the covering by a gluing procedure. Such a reconstruction is
not always possible for general (nGt-)algebras, as was noticed in [6]. The aim of [6] was
to introduce differential calculi over algebras with covering. Leavingtheategory, one is
confronted with the above difficulty, called “noncompleteness of a covering”. Nevertheless,
making use of “covering completions”, if necessary, a general scheme for differential calculi
on guantum spaces with covering was developed, and the example of the gluing of two
quantum discs, being homeomorphic to the quantum spfyﬁr,ec > 0, including the
gluing of suitable differential calculi on the discs, was described in detail.

In [4], a locally trivial quantum principal fibre bundle having as b@sesuch a quan-
tum space with covering, and as fibre a compact quantum gkgup defined as a right
H-comodule algebra with a covering adapted to the covering of the base. “Adapted” means
that the ideals defining the covering appear as kernels of “locally trivializing” homomor-
phisms such that the intersections of these kernels with the embedded base are just the
embeddings of the ideals defining the coveringdoiGiven such a locally trivial principal
fibre bundle, one can define analogues of the classical transition functions which have the
usual cocycle properties. Reversely, given such a cocycle one can reconstruct the bundle.
The transition functions are algebra homomorphigins> Bjj, whereBj is the algebra
corresponding to the “overlap” of two elements of the covering oft turns out that they
must have values in the centre®f, which is related to the fact that principal bundles with
structure groupH are determined by bundles which have as structure group the classical
subgroup ofH, see [4].

The aim of the present paper is to introduce notions of differential geometry on locally
trivial bundles in the sense of [4] in such a way that all objects can be glued together from
local pieces.
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Let us describe the contents of the paper. In Section 2, locally trivial principal bundles are
defined slightly different from [4]. Not assumin@*-algebras, we add to the definition of
[4]the assumption that the “base” algebra is embedded as the algebra of right invariants into
the “total space” algebra. This assumption has to be made in order to come back to the usual
notion in the classical case, as is shown by an example. We prove a technical proposition
about the restrictions of locally trivial principal bundles to overlaps of trivializations which
in turn makes it possible to prove a reconstruction theorem for such bundles in terms of
transition functions in the context of general algebras.

The aim of Section 3 is to introduce differential calculi on locally trivial quantum prin-
cipal bundles. They are defined in such a way that they are uniquely determined by giving
differential calculi on the “local pieces” of the base and a right-covariant differential calcu-
lus on the Hopf algebra (assuming that the calculi on the trivializations are graded tensor
products). Uniqueness follows from the assumption that the local trivializing homomor-
phisms should be differentiable and that the kernels of their differential extensions should
form a covering of the differential calculus on the total space, i.e. the differential calculus
is “adapted” in the sense of [6]. This covering need not be complete. Thus, in order to
have reconstructability, one has to use the covering completion, which in general is only a
differential algebra.

Section 4 is the central part of the paper. Whereas in the classical situation there is a
canonically given vertical partin the tangent space of a bundle, in the dual algebraic situation
there is a canonically given horizontal subbimodule in the bimodule of forms of first degree
on the bundle space. We start with the definition of left (right) covariant derivatives, which
involves a Leibniz rule, a covariance condition, invariance of the submodule of horizontal
forms, and a locality condition. Covariant derivatives can be characterized by families
of linear mapsA; : H — I'(B;) satisfyingA;(1) = 0 and a compatibility condition
being analogous to the classical relation between local connection forms. At this point a
bigger differential algebra on the bagtsappears, which is maximal among all the (LC)
differential algebras being embeddable into the differential structure of the total space. Next
we define left (right) connections as a choice of a projection of the left (rigtrtjodule of
one-forms onto the submodule of horizontal forms being covariant under the right coaction
and satisfying a locality condition. This is equivalent to the choice of a vertical complement
to the submodule of horizontal forms. Left and right connections are equivalent. With this
definition it is possible to reconstruct a connection from connections on the local pieces of
the bundle. The corresponding linear mafps H — I'(B;) satisfy the conditions for the
A; of covariant derivatives, and in additidghC ker A; (S~1(R) cC ker A;), whereR is the
right ideal in H defining the right-covariant differential calculus there. Thus, connections
are special cases of covariant derivatives. There is a corresponding notion of connection
form as well as a corresponding notion of an exterior covariant derivative. The curvature
can be defined as the square of the exterior covariant derivative, and is nicely related to a
curvature form being defined by analogues of the structure equation. The local components
of the curvature are related to the local connection forms in a nice way, and they are related
among themselves by a homogeneous formula analogous to the classical one.

Finally, in Section 5, we give an example of a locally trivial principal bundle with a
connection. The basis of the bundle, constructed in [6],'imblyebra glued together from
two copies of a quantum disc. The structure group is the classical dfglip and the
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bundle is defined by giving one transition function, which is sufficient because the covering
of the basis has only two elements. Since all other coverings appearing in the example then
have also two elements, there are no problems with noncomplete coverings. The differential
calculus on the total space is determined by differential ideals in the universal differential
calculi over the two copies of the quantum disc and the structure group. For the group, the
ideal is chosen in a nonclassical way. Then, a connection is defined by giving explicitly two
local connection forms. The curvature of this connection is nonzero.

In Appendix A, the relevant facts about coverings and gluings of algebras and differential
algebras are collected, for the convenience of the reader. Details can be found in [6]. More-
over, we recall there some well-known facts about covariant differential calculi on quantum
groups.

In the following, algebras are always assumed to be Gyassociative and unital. Ideals
are assumed to be two-sided, up to some occasions, where their properties are explicitly
specified. Tensor products of algebras are either equipped with the standard algebra struc-
ture (factorwise product) or, for differential algebras, with #aegraded product. If the
words “homomorphism” and “isomorphism” are used for mappings of algebras, they mean
homomorphisms and isomorphisms of algebras. The antipode of a Hopf algebra is always
assumed to be invertible.

2. Locally trivial guantum principal fibre bundles

Following the ideas of [4], we introduce in this section the definition of a locally trivial
quantum principal fibre bundle and prove propositions about the existence of trivial sub-
bundles and about the reconstruction of the bundle. Essentially, this is contained in [4],
up to some modifications: We do not assu@iealgebras, and we add to the axioms the
condition that the embedded base algebra coincides with the subalgebra of coinvariants. As
structure group we take a general Hopf algebra.

In the sequel we use the results of [6], see also Appendix A. We recall here that, for an
algebraB with a covering(J;);¢s, there are canonical mappings: B — B; := B/J;,

n; : B; — Bij = B/(J; + J}), mj : B— Bjj, etc.

Definition 1. A locally trivial quantum principal fibre bundle (QPFB) is a tupel

(P, Ap, H, B, ¢, (Xi» Ji)iel)> (1)
whereB is an algebraH is a Hopf algebraP is a rightH comodule algebra with coaction
Ap, (J;)ier isacomplete covering @, andy; and: are homomorphisms with the following
properties:

Xxi - P — B; ® H surjective t: B — P injective

(i[d® A)o xi = (x; ®id) o Ap, xiotl@) =mi(a)®1, acB,

(ker xi)ic; complete coveringoP, «(B) ={f € P|lAp(f) = f ®I}.

Such a tupel we often denote simply By OccasionallyP, B andH are called total space,
base space and structure group of the bundle.
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The lastassumption in Definition 1 does not appear in the definition of QPFB givenin [4].
Itis however used by other authors [1,11,20]. Already in the classical case this condition is
needed to guarantee the transitive action of the structure group on the fibres, as shows the
following example.

Example. Let M be a compact topological space covered by two closed subsetad

U, being the closure of two open subsets coveriig Define My = U;UU> (disjoint
union). M is obtained fromM identifying all corresponding points @f; andU;. There

is a natural projectiolMy — M. Let us consider the algebras of continuous functions
C (M) andC(Mp) over M and Mg, respectively. There exists an injective homomorphism
k 1 C(M) — C(Mp) being the pull back of the natural projectidfiy, — M. Suppose

we have constructed a principal fibre bundieover My with structure groups, which

is trivial on each of the disjoint components. Then we have an injective homomorphism
to : C(Mp) — C(P) and two trivializationsy12 : C(P) — C(U12) ® C(G) with the
properties assumed in Definition 1. The injective homomorphismC(M) — C(P),

L := (g o k, fulfills all the assumptions in Definition 1 up to the last one, and one obtains a
fibration P over the base manifol#f which is not a principal fibre bundle.

Proposition 1. LetP¢ be the covering completion &fwith respect to the complete covering
(keryi)icr- LetK : P — P be the corresponding isomorphism. The tupel

(Pc, Ap,, H, B, tc, (Xic» Ji)iel),
where

Ap, = (K ®id) o Apo K71, Xie = xi o K71, =Kot
is a locally trivial QPFB

The proof is obvious (transport of the structure uskg

Definition 2. A locally trivial QPFB P is called trivial if there exists an isomorphism
x : P — B ® H such that

xot=Iid®1, x®id)oAp =(d® A)o .
Remark. A locally trivial QPFB with cardl = 1, i.e. with trivial covering ofB, is trivial.

Triviality of the covering means that it consists of only one idéat 0. Moreover, there is
only one trivializing epimorphisny : P — B ® H which necessarily fulfills key = 0.

There are several trivial QPFB related to a locally trivial QPFB. Deftne= P/ker ;.
Theny; : P; — B; ® H defined by

Xi (f +kerx) = xi(f) (2)
is a well-defined isomorphismy. : B; — P; defined by

) =%t ®1)
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is injective and fulfillsy; o ; = id ® 1. Moreoverdp, : P; — P; ® H is well defined by
Ap,(f +kery;) = Ap(f) +kery; ® H,

because froniid ® A) o x; = (x; ®id) o Ap follows Ap(ker x;) C ker y; ® H. Obviously,
Ap, is a right coaction. Moreove(y; ® id) o Ap, = (iId® A) o x;, and;(B;) = {f €
PilAp,(f) = f ®1}. Thus(P;, Ap,, H, Bi, i, (Xi, 0)) is a trivial QPFB.

Let Pj = P/(kery; + kery;). Then there is an isomorphismj Py = (Bi ®
H)/xi(ker x;) given by

%y (f + kerxi +kerxj) := xi(f) + xi(ker x;). 3)

It is natural to expect tha®; should be a trivial bundle isomorphic 8 ® H. In fact, we
will show that there is a natural isomorphisiB; ® H)/xi(kery;) ~ Bj ® H, leading
to trivialization mapsy;; : Pj — Bjj ® H. Let us introduce the natural projections, :

P— P, Tijp - P — Pj andnjp : Pi = Pj. Obviously,x; o mwi, = xi, Tip = )?,-_l o Xi
andrmij, = 7} omi. We will need the following lemma, which generalizes an analogous
lemma proved in [4] for the case of compact quantum groups.

Lemma 1. Let B be an algebra andd be a Hopf algebra. Leff ¢ B ® H be an ideal
with the property

(id® A)J CJQH.
Then there exists an idedlc B such that/ = I ® H. This ideal is uniquely determined
and equalgid ® ¢)(J).

Proof. It follows from surjectivity ofid ® ¢ that! := (id ® £)(J) is an ideal inB. We will
showJ = I ® H. First, we prove/ C I ® H. Because ofid ® ¢ ® id) o (id ® A) = id
and(id® A)J c JQ H,wehave(id® e @ id) o ((d® A J =JCIQH.IQH CJ
is a consequence ¢f® 1 c J, which is proved as follows: A general element/diias the
form )", are(hy), where) ", ar ® hx € J. Because of

D are(hi) @ 1= "(a ® hiy) )1 ® S(hi )
k

k

and

(id® A) (Zak ® hk) = Zak ® hk(l) ® hk(z) e JQH,
k k

> rake(hy) ® Lis an element of . O
Proposition 2. Pj is a trivial QPFB, i.e. there exist
Xii: :Pj — Bj® H, Apij :Pj — Pj @ H, tij - Bij — Pj,

such that the conditions of Definitiodsand 2are satisfied
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Remark. Pj is a trivial QPFB in two ways by choosin;gjﬁ or Xi{. The composition of
these maps just gives the transition functions.

Proof. Applying x; ®idto Ap(kerx;) C kerx; ® H and usingid® A)o x; = (x; ®id)o
Ap itfollows that(id ® A) o x; (kerx;) C xi(kerx;) ® H. By Lemma 1, there exist ideals
I?j C B; suchthay; (ker ;) = I€j®HK5 = nj(l?j)isan ideal inBjj. Our aim is to show
I?; = m;(J;), because then we have a natural isomorphis® H/ x; (kerx;) ~ Bj ® H
whose composition witly;; gives the desireg; .

Firstwe showr; (J;) C IE; According to~Lemma 1, we ha\Ié;'. = (ide?s)(xi(kerxj)).
We need to show that fér € J; there exist$ e ker x; with (id ® €) o x; (b) = m;(b). This
is obviously achieved by taking = ¢(b).

Using this inclusion, one finds that there is a canonical isomorpliBM® H)/ x;
(kery;) =~ (Bij/K;) ® H given byb ® h + x;(kerx;) — (m;i(b) + K}) ® h. Com-
posing with)ziji (see (3)), there results an isomorphis(rir: Py — Bij/K;- ® H given
by

X (f +Kerx; + kerx) i= (x} ®id) o xi(f) + K} ® H.

Our goal is now to showk: = 7(K’) = 0.
As a first step we will prove!(j. = K/ To this end, we note that

O i ~-1
¢]| = Xij Oﬂjp O Xi

is a homomorphisng; : B; ® H — Bij/Kij ® H with kergji = I?j ® H. In terms of this
homomorphism, we define a homomorphigin: Bj — Bij/l([.j by
Yjila+J; +J;) = (d®e¢) o @ji((a+J;) ®1).

¥ii is well defined due to the inclusion (J;) C I?; already proved above. From kﬁr =
K’ ® H easily follows that ketyji > K. On the other hand, the following calculation
shows thatyji : Bj — Bij/K] is the natural projection, and therefdké = K/
Viita + J;i + J))

=(@{d®e)odi(a+J)®D =(d®e)o x”j ° 7T§7, of M@+ J)®1)

= (id®e) o x] omjp(t(a)) = (id®e) o 1 (1(a) + ker x; + ker ;)

= ([d®e)((r] ®id) o x; (@) + K] @ H)

= (d®e&)((r] ®id)(7;(@) @) + K] & H)

= mjj(a) + Klj

i _ ) L
Note thatK’; = K also meangj = ;.
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For showingk’ = 0, we use the completeness of the covetkey x;);<;. The covering
completion ofP is by definition

%={mmaegpmamw;w»=mgﬁﬁ.

We introduce a locally trivial QPFB ~ P, such that a comparison gicoH — (1 ¢
PlAs(f) = f®1) with B ~ B allows to read off ketyjj = K;. = 0. Let ¢jj :
Bj/K' ® H — Bjj/K’ ® H be the isomorphisms defined by

@ij = Xiﬁ o Xi{_l
Using the identities
Xij 0 Ty 0 X T = ®id) o (7] @ id)
it is easy to verify that the algebf@. is isomorphic to the algebra
¢=hwweg@®H*w®mo@®m®)
= ¢jj o (Yji ®id) o (7] ® id)(gj)} 4)

(cf. Lemma 1 in [6]), and the corresponding isomorphigm P, — P is defined by
x((fier) == (Xi(fi)ier. Transporting the homomorphisrasp,, x;. andic to Ap =
(x ®id) o Ap, o x 7L, %i := xi. o x L andi := x o (¢ respectively, one obtains a locally
trivial QPFB again. Explicitly,

Ap((gidier) = ((d ® A)(gi))ier, Xi ((8)ker) = 8is i(a) = (mi(a) ® Diey-

Using the existence ol ; andi, and surjectivity ofis;i andn;'., one easily shows that the
isomorphismsp;j fulfill

(id ® A) o ¢jj = (¢ ®id) o (id ® A), 5)
Pja®l) =a®1l, aGBij/K§- (6)

Using (5) and (6) it follows that the subalget®°" = (f € P|Ax(f) = f ® 1} is
isomorphic to

PeoH _ { (ai @ Djes € -?zBi ® 1‘ Yiji o n;(ai) ®1l=1jo nij(aj) ® 1} .
L
This algebra is by Definition 1 isomorphic to

B~ Bc = {(ai)iel € ®B;
iel

Wm=#@4

(see [6] and Appendix A). It follows that thgjj have to be isomorphisms, i.e. kgy =
K} = 0, which means in fagl = id. Thus,xﬁ :Pj — Bjj ® H are isomorphisms.
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Further definedp, : Pj — Pj ® H by
Ap;(f +kery; +Kery;) = Ap(f) + (kery; + kery;) ® H
and.j : Bj — Pj by
tij (mij (@) ‘= 1(a) + kery; +Kkery;.
Itis easy to verify that all the conditions of Definition 2 are satisfied. O
Notice that, due thj. =0, we havel?j. = m;(J;). This means
xi(kerx;) =mi(J;) ® H. (7)
The isomorphisms(ij: satisfy
Xi o mijp = (wh ®id) o xi, (8)
and thegjj defined above are isomorphismg ® H — Bjj ® H fulfiling (5) and (6)
i o ¢ji = id.

Notice that the isomorphismtk appearing in Proposition 1 is a bundle isomorphism in
the following sense:

Definition 3. Two locally trivial QPFBSP, Ap, H, B, t, (xi, Ji)ier) and(P’, Ap, H, B,
U, (x/» JDier) with the same structure groug, the same basg and the same covering
(J)ier of B are said to be isomorphic, if there exists an isomorphjsmP — P’ such
that

Yor=", 9)
(W ®id) o Ap = Apr o ¥, (10)
v (keryx;) = kery/. (11

For classical locally trivial principal fibre bundles the condition (11) follows from (9) (a
bundle isomorphism preserves the fibres).kas in this case the set of functions vanishing

on some trivialized piece of the bundle space. We were not able to derive (11) from the
other assumptions in general. However, condition (11) is fulfilled automatically in the case
I = {1, 2}. This follows from the following proposition.

Proposition 3. For a locally trivial QPFB (P, Ap, H, B, t, (xi, Ji)iec{1,2;) the equalities
kery; =Pu(J)P, i=12, (12)

are valid

Proof. The inclusion ker; > Pu(J;)P is obvious fromy ot = 7m; ® 1y. To prove

the other inclusion, assumg (p) = 0. It follows from (8) that(n% ® id) o x1(p) =

$120 (T2 ®id) o x2(p) = 0, thereforexz(p) € ker(wr? ® id) = 72(J1) ® H. Thus, one
findsb, € Jy andh, € H such thatxo(p) = ) m2(br) ® hi. Due to the surjectivity of
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x2 there existdy, € P such thatya(h) = 1 ® hi. The elemenpy := Y, t(by)hy is in
Pu(J1)P C kerx1 and thereforep — po € kerx1. But p — p2 € ker x2 by construction,
and thusp — p2 € ker x1 N ker x2 = {0}. O

Eqg. (11) is in the casé = {1, 2} an immediate consequence of this proposition
vkerxi) = Py ()P =P/ ()P =kery]. (13)

Proposition 4 (cf. Budzyhski and W. Kondracki [4]).A locally trivial QPFB over a basis
B with complete coverin@/;);<; and with structure group H defines a family of homomor-
phisms
Tj . H — Bj
called transition functions, satisfying the conditions

tii(h) = 1e(h) Yh € H, 7i(S(h) = tj(h) Yh e H,

tj(h)a = atjj(h) VYa € Bjj, he€ H,

7)o tij(h) = mpy o (2 0 1) ® (T o 1)) 0 Ah)  Vh € H.
Here n}k . Bk — Bk are the canonical homomorphisms g, is the multiplication in
Bijk. On the other hand, every family of transition functidng. of homomorphisms;
with the above properti@selated to an algebraB with complete coveringJ;);c; and a
Hopf algebraH determines alocally trivial QPFBP;, Ap_, H, B, i1, (xi,, Ji)ier). If the

transition functions stem from a given locally trivial QPEB, Ap, H, B, t, (xi, Ji)iel),
the bundleP; is isomorphic taP.

Proof. Let a bundleP be given and let they : Bj ® H — Bjj ® H be defined as above.
Define homomorphisms; : H — Bjj by
Tji(h) == (id @ &) 0 ¢ (1 ® h). (14)

(There is another possible choieg(h) := (id®e¢)¢ij (1® 1), which corresponds to another
form of the cocycle condition.) One shows that (14) is equivalent to

dijla®@h) = Zafji (h) ® he). (15)
Using (5), (6) ande ® id) o A = id it follows from (14) that
Y atitha) ®hp =) (@@ D((d®e) o ¢ij(1® ha) @ he)
=@®)(d®e®id) o (¢j ®id) o ((d® A)(1® h)

=@®1([i[d®e®id)o(id® A)o¢j(l®h)
=@® D¢j1®h) = gija ® h).

Conversely, if (15) is satisfied, the choice= 1, together witle (h(2)) ® (1) = h gives (14).
Tii (h) = e(h)1 follows from¢jj = id. Every homomorphism;j : H — B is convolution



124 D. Calow, R. Matthes/Journal of Geometry and Physics 41 (2002) 114-165

invertible with convolution inverseij‘1 = 1j o S. On the other hand fromjj o ¢ = id
easily followsr,

j_ = Tji:

@ij 0 i (1 ® h) = ¢jj (Z Tj(h@) ® h(2)) = Z Tij(h@)Ti(h2) ®h@e =1 h.

Applying id ® €, we obtain}_ 7 (h(1))7ji (h2)) = e(h)1, i.e.7j = tj o S. 7jj has values in
the centre oBj;

atij(h) — tij(h)a=a(id ® &)¢ji(L® h) — (ild ® £)¢ji (L ® h)a
=(d®e)((a®@Deji(l®h) — ¢ji(l® h)(a® 1))
= (id ® &)(¢ji ((a ® h) — (a ® h))) = 0.

To prove the last relation of the proposition, define isomorphiﬁ’[nsBijk ®H — Bik®H
by

¢f ((a ® h) + i) (Ji) ® H) = ¢jj(a ® h) + mij (i) ® H

(using Bijjk > Bijj/mij (Ji)). ¢i’j‘ are well defined because ¢fj(a ® 1) = a ® 1. Now, a
lengthy but simple computation leads to

&k = i o Bl

The idea of this computation is to consider the isomorpl’y‘éjhﬁ: P/(kerx; +kery; +
ker xx) — Bix ® H induced byy; and to provepi’j‘ = Xl.”k o '/.Jk*1.

Combining the definition o with (15), one obtains
ghaoh = an) o ti(hw) ® he).
Therefore, taking = 1 and applyindd ® ¢,
ot (h) = (id @ &) 0 (L@ ).
Inserting hera&i’j‘(l ®h) = ¢i{( o ¢|"(j(1 ® h) yields
7 otgith) = > (19 o )@ o uith2)).

This ends the proof of one direction of the proposition.

We will not give the details of reconstruction of the bundle from the transition func-
tions. We only remark that, for a given family of transition functiafs we define the
isomorphismsj by formula (15), which gives rise to the gluing

Pr = {(fi)ie/ € @I(Bi ® H)

() ®id)(f;) = ¢y o (] ® id)(fj)} . (16)

One verifies that the formulas
Ap, ((f)ien) = (d @ A(fi))ier Y(fi)ier € Pr, (17)
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ek ((f)ier) = fx  Y(fi)ier € Px, (18)
tr(a) = (mi(a) ® Dje; VYa € B (19)

define a locally trivial QPFRP,, Ap_, H, B, iz, (Xzi, Ji)ier). If the 7j stem from a given
locally trivial QPFBP, applying the isomorphism —1 defined as above (proof of Propo-
sition 2) leads t@P; >~ P;. O

Note that the QPFB®, P., P, have identical transition functions.
The following proposition summarizes Definition 9, Proposition 4 and Theorem 3 of [4].

Proposition 5. Families(zj) and(z’j) of transition functions related to the same covering
of the baseB and the same Hopf algebi define isomorphic locally trivial QPFBs if and
only if there exists a familyo;);c; of homomorphisms; : H — B; with values in the
centre ofB; such that

T = mp; o (mp;®id) o (7i@id ® pil) o (07 0 §) ® 7 ® o) o (Id ® A)oA,  (20)
or, in Sweedler notation,
Tj(h) = Z(ﬂj o 0; o S(h()))(Tj (h(2)))(7Tij 00;(h@)). (21)

Proof. Using the isomorphy to gluings of the type (16), the proof relies on the following.
First, a bundle isomorphisny in the sense of Definition 3 gives rise to isomorphisms
¥ : Bi ® H — B; ® H of trivial bundles by

Vioxi=xioy. (22)
Thev; are bijective due to (11). Corresponding homomorphismsH — B; are defined
by

oi(h) = ([d®e) oy (1® h). (23)

On the other hand, if a family of centre-valued homomorphispns H — B; is given,
corresponding isomorphismis : B; ® H — B; ® H are defined by

Yib®h) =Y boi(ha) ®he). (24)

We leave the details of the argument to the reader. O

3. Adapted covariant differential structureson locally trivial QPFB

In the sequel, we will use the skew tensor product of differential calculi/l@t) and
I'(B) be two differential calculi. We define the differential calcullisA)&I"(B) as the
vector spacd’(A) ® ' (B) equipped with the product

(Y®p)(@&7) = (—1)™(yo®p1),
wel"(A), pel(B), yeI'(A), 1 €'(B) (25)



126 D. Calow, R. Matthes/Journal of Geometry and Physics 41 (2002) 114-165

and the differential
d(y®p) = (dy®p) + (=1)"(y&dp), y €TI'"(A), pe'(B). (26)

We remind the reader that for every differential calcullg ) there exists a differential ideal
J(A) in the universal differential calculu® (A) such thatl"(A) >~ £2(A)/J(A). There
may be different/(A) leading to isomorphia2(A)/J(A). We always choosd (A) =
ker(ida,,_ -) (see Appendix A for this notation) and call this ideal the differential ideal
corresponding ta"(A).

Proposition 6. LetI"(A) and I" (B) be two differential calculi and lef (A) C £2(A) and
J(B) C £2(B) be the corresponding differential ideals, respectively. Letid A — AQB
andl®id: B - A ® B be the embedding homomorphisms. Then, the differential ideal
J(A® B) C 2(A ® B) corresponding td”(A)&®I"(B) is generated by the sets

(d® De(J(A); 1id)o(J(B))
{(a®1d(1®b) — (d1®b))(a®1)a € A, be B} 27)

Proof. J(A ® B) is defined as the kernel of := (idagB)o—r @ 2(A® B) —
I'(A)®T (B). ¢ can be written explicitly as follows:

v (Z(a,? ® Dd(a} ® 1)) = alda®l,
k k

v (Z(l Rb)d(1® b,b) =" 1&60db}.
k

k

Using the rules (25) and (26) itis easy to verify that the differential id¢al® B) generated

by the sets (27) satisfiegg A ® B) C kery/. LetI'(A® B) = 2(A® B)/J(A® B). Using

the Leibniz rule and/? = 0, one concludes easily from (27) that there are the following
relations in" (A ® B):

(d@®1)(1®b)=(1®b)da®1l), (28)
da®Dd(1®b) = —d(1®b)d(a ® 1). (29)

We define now a homomorphismt : I'(A ® B) — I'(A)QI'(B) by ¥ o = ¥,
wherer : 2(A ® B) — I'(A ® B) is the quotient map with respect A ® B). ¥

is well defined because of(A ® B) C kery,. On the other hand, we define a linear
map¢ : I'(A)®I'(B) — I'(A ® B). Due to(id ® 13)o(J(A)) C J(A ® B) and
(14 ®id)o (J(B)) C J(AQ® B) there exist homomorphisms, := (id® 1) : I'(A) —
I'A® B)andYp := (14, ®id)r : I'(B) — I'(A ® B), and¢ is defined by

d(@®p) = Ta(@)Tp(p).

¢ is well defined due to the universality of the tensor product) ® I"(B). Now, a direct
computation, making use of (28) and (29), shows #hat) = id andyr o ¢ = id. Thus,yr
is an isomorphism, and it follows thd{ A ® B) = kery» = J(A ® B). O
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Remark. If we are in a converse situation, i.e. if a differential calculigA ® B) with
corresponding differential idedl(A ® B) is given, there exist differential idealg A) :=
J(A®B)NR2(A®1)andJ(B) := J(A® B)N2(1® B). By Proposition 6, the differential
calculus is isomorphic to an algebra of the foffA)& 1" (B) if and only if J(A ® B) is
generated by the sets (27).

In the sequel, we always identify/ker x; with B; ® H, by means of the isomorphisms
Xi (see (2)).

Our goal is now to define differential structures®nBy Proposition 22, a family of dif-
ferential calculiI" (B;) and a right-covariant differential calculd3(H) determine unique
differential calculiI"(B) and I"(P) such that(I"(B), (I'(B;))ic;) and (I (P), (I'(B)&®
I'(H));c; are adapted toB, (J;)icr) and(P, (kerx;)icr), respectivelyl” (P) and I (B)
are givenin the following way: one has the extensigns, . : 2(P) — I'(B)®I'(H)and
i, . 2(B) = I'(B;)ofthey; andr;, respectively. These extensions give rise to differ-
entialideals key;,, .- C £2(P)andkerr;, . C §£2(B),thusJ(P) := N;esker x;,_, -~ and
J(B) := Njerkerm;, . aredifferential ideals. By construction(P) := £2(P)/J(P)and
I'(B) := 2(B)/J(B) are adapted, i.e. the extensigns : I'(P) — I'(B;)®I'(H) and
i - I'(B) — I'(B;) of the x; andn; exist and fulfillN; e ker x;,. = 0 andN;¢skerr;,. =
0, respectively.

Definition 4. A differential structure on a locally trivial QPFB is a differential calculus
' (P) defined by a family of differential calculi™(B;) and a right-covariant differential
calculusI"(H), as described above.

Proposition 7. Let I'(P) be a differential structure ofP, and letI"(B) be determined
by the correspondind™(B;) as above. Therd (P) is covariant, i.e. there exists a right
coactionAg : I'(P) — I'(P)® H extendingAp and being compatibel witti, Ag(df) =
(d ®id) o Ap(f) (cf. Definition13). The x;,. satisfy

AL (kerxi.) Ckerxi. ® H Yiel. (30)
The extension; : I'(B) — I'(P) of ¢ exists, fulfills

Xir otr(y) =i (y)®1 Vy € ['(B),
and is injective
Proof. As explained before Definition 4, the differential ideal corresponding (®) is

J(P) = nikeryi,_. . C $2(P). Using the right covariance o2 (P) and I"(H), and
Definition 15 one finds that the extensiogs _ - fulfill

(Xigor ®id) 0 AR = ([d® AT) 0 xig_ 1,

whereA” is the right coaction of (H). Due to this formula the differential ideals ke, _ -
are covariant under the coaction Hf, i.e. A%(ker)(m#) C keryi,_.r ® H, thus, the
differential ideal/ (P) := N;¢/Ker x;,_, » corresponding té" (P) is covariant and it follows
that I" (P) is covariant. This also gives (30).
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The differential ideal corresponding fo(B) is J (B) = N;kerx;, ., C §2(B). Itis easy
to see that, (J(B)) C J(P), thus the extensiory of ¢ with respect tal"(B) and I’ (P)
exists. Clearly - satisfies

Xir otr(y) =i (y)®1 Vy € I'(B).

Because of this formula araikerz; . = 0, ¢ is injective. O

The differential structure on a locally trivial QPFB determines the covering completion
I'c(P) of I'(P) with respect to the coveringker x;-)iecs (See Appendix A)I¢(P) is an
LC-differential algebra (see Appendix A) with local differential calclliB;)&I"(H). It
will be shown that/t(P) is a right H-comodule algebra and that the covering completion
I'c(B) of I'(B) isembedded i (P). But first we need some facts about differential calculi
over Bjj ® H appearing in our context. For the moment we can even assume that the above
construction of" (P) is performed for a general differential calculli$B; ® H). Over the
algebrasBjj ® H there exist two isomorphic differential Ca|Clmi(Bij QH)=TI(B;Q
H)/xip(kery;.) andI'/(Bj @ H) = I'(B; ® H)/x - (ker x;,.), and two corresponding
differential ideals/' (Bj ® H) C £2(Bjj ® H) andJ/(Bj ® H) C £2(Bjj ® H).

Proposition 8. The differentialideald’ (Bjj® H) andJ/ (Bjj® H) have the following form:
J\(Bj® H) = (7} ®id)o(J(B; ® H)) + ¢ij, o (7! ®id)o(J(B; @ H)  (31)

J(Bj® H) = (1] @id)o(J(B; ® H) + djig o (1} @id)a(J(B; ® ).  (32)

wheregjj, are the the extensions of the isomorphigipsorresponding to the transition
functionsr;;.

For the proof, we need the following lemma.

Lemma 2.

(@ id) o x; = gij o (] ®id) 0 x;.
Proof of thelemma. Using the identitieg; = Xﬁ: o Xijjfl andxijf o ijp = (nj ®id) o xi,
one has

(7'[;» Rid)o x; = Xii: o Wijp = @ijj © Xijj o Tijp = @jj © (7'[[] ®id) o x;. O
Proof of theproposition. The differential calculuf"(BiJ-@H) =I'(B;®H)/xi-(kery,)
is isomorphic toI"(P)/(ker xi. + kerx;.), which in turn is isomorphic ta®(P)/
(ker xio_, - +ker xj,_, ). Thus, the differential calculi (Bjj ® H) andI"/ (Bjj ® H) can be
identified with$2 (B; ® H) / xi, (Ker xio_,  +Kerxjo_, 1) andSZ(Bj ®H)/xjoKer xin_, r+
kerxjo_ ), respectively. Applyingn§ ® id)e respectively(nl.’ ® id) one obtains the
differential ideals

J'(Bj @ H) = (7} @ id)q o xig (Kl Xig_ 1 + kel xjg 1),

Jj(Bij ® H) = (JTl-j ®id)p o Xjo (ker)(,-g_)r + kerxqur).
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Now, xi, (Ker xi,_, ) = J(B; ® H) andy, (kerx;,_ ) = J(B; @ H) yields
J(Bj® H) = (7} ®id)o (J(B; ® H)) + (7} ®id) 0 xip (x;,-(J (Bj ® H))).
(33)

Due to Lemma 2, the two homomorphismzs’j'. ®id)g o xip : 2(P) — 2(Bj ® H) and
(] ®id)g o xj, : R(P) - 2(Bj ® H) are connected by

(nj. ®id)e o xip = dije © (ﬂij ®id)e o xja,
thus
(mh @ id)g o Xip (X} (J (B ® H))) = ¢ij, o (n] ®@id)o(J (B} ® H)).
Inserting this formula in (33) gives (31). (32) results by exchanging O

Due toJ!(Bj ® H) = ¢jj,(J/(Bj ® H)) (immediate from Proposition 8) the isomor-
phismgy is differentiable with respect tﬁf(Bij ® H) andF"(Bij ® H). ¢jj denotes the
corresponding extension.

From now on, coming back to the descriptiomgfP), we consider the cage(B; Q H) =
I'(B)®T (H). ' . '

Denoting by(n;. ®id)ri : I'(B)®I'(H) — I''(Bjj ® H) the natural projection/t(P)
has the following explicit form

Ie(P) = { (Wier € @ M(BIST(H)| (] ®id) i ()= © (] @ i) (w)} :
(34)

Note that this gluing is fully analogous to the gluing (16).

Proposition 9. Let I"(P) be a differential structure of®, let I'.(P) be the covering com-
pletion of I"(P) and let/:(B) be the covering completion éf(B). Let x;, andx; . be
the restrictions of the respective ith projections

Then there exist a unique right c:oactiomf,;C : It(P) — It(P)® H and a unique
injective homomorphismy, : I:(B) — Ic(P) such that

(Xir, ®id) 0 A = (id® A”) 0 xif,. (35)
Xir, 0 tre(¥) = ip (¥) ® 1 Vy € Ie(B). (36)

Remark. Indeed, the;, : It(P) — I'(B))®I'(H) andn;, : I':(B) — I'(B;) coincide
with differential extensions of; andr;, respectively. In the following proof, we will need

ker(r! @ id) i = xip (KET xjr) = xip, (KET Xjp,)- (37)

Proof. The idealsy; - (kery;.) are covariant under th&/-coaction(id; ® AT, as fol-
lows from the covariance of the ideals kg under theH-coaction A7’;. Therefore,
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making use of the first equality (37), there extftcoactions(id ® A)Fi onI"'(Bj ® H)
satisfying

(d® A o (i @id) i = ((r} ®id) 1) ®id) o (id ® A7), (38)

(id® ) o i = (g, ®id) o (id® A). (39)
Thus there exists au‘-f—coactionAgC on I't(P) defined by

AR (()ien) = ((id; ® ATY))ier Y(ier € Te(P). (40)
Further, one defines an injective homomorphisgt I'c(B) — Ic(P) by

tr((pier) = (pi®V)ier  Y(pi)ier € Te(B). (41)
Both homomorphisms are uniquely determined by the assumptions of the proposdition.

In general, the differential calcufi’ (Bj®H) andr/ (Bjj® H) seem notto be isomorphic
to differential calculi of the fornd™ (Bjj Y®TI'(H). Thisis suggested by alook atthe generators
of the differential ideal/’ (Bjj ® H).

Lety, : 2(B;) — 2(B; ® H) be the extension of :=id ® 1 and lety;, : 2(H) —
2(B; ® H) be the extension of; := 1 ® id. By Proposition 6, the differential ideal
J(B; ® H) corresponding td"(B;)®I"(H) is generated by the sets

tig (J(Bi)), $ip (J(H)),
{(@®Dd(1®h) - (d1®h))(a®1), aeB;, heH} (42)

where the differential ideals(B;) andJ (H) correspond to the differential calculi( B;) and
I’ (H). Assume thatthe differentialidea({ H) is determined by arightide® c kere ¢ H
in the sense thak(H) is generated by the sgt’ S‘l(r<2))dr(1) |r € R} (see also Appendix
A). Using (15), (42) and (31), one obtains the following generatots OBjj ® H):

(@ id)g 0 tig (J(B)), (1} ®id)g o 1j,(J(B))), (43)
[Yasstee)daera|rer], (44)
[ > @it @ ST r@d( ) @ r@)| r € R, (45)
{@a®1d(1®h) — (d(1®h))(a ® 1)|a € Bj, h € H}, (46)

{ (a® d (Z Tji(h1) ® h(Z))
—(d (iji(h(l))®h(2))>(a®l)‘a € Bj, he H}. 47)
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Observe that by (45)—(47) and the Leibniz rule

D (@i (r@) ® ST r@))d (i (ray ® r(2))
= (@i (r@) ® Dd(i(ra) ® 1)
Y @i Srara) @ STHrE)d1ere) € J'(Bj® H), reR,
thus one can replace the generators (45) by
> @i (@) ® Dd(ji(ray) ® 1)
+ ) @i (Sr@)ra) ® STHre))d(1®r2) € J'(Bj ® H), r€R. (48)

Using the Leibniz rule, the fact that the imagepfies in the centre oBjj, and the generators
(46), one can replace (47) by the set of generators

{(a®Dd(zi(h) ® 1) — d(zji(h) ® D)(a ® D|a € Bjj, he H}.

Proposition 10. Let the differential calculug™(H) be determined by a right idedt
kere C H and letzj be the transition function corresponding to the isomorphigm
Assume that the right ideal has the property

> T (Stra)re) ®r@ € Bj®R VreR, Vi jel (49)
Then there exist differential ideals, (Bjj) C £ (Bjj) such that
Fi(Bij ® H) = Fj(Bij ® H) = (2(Bjj)/Jn(Bi)&I (H).

Proof. Because of (49) the second term of (48) lies already in the part @ ® H)
generated by the set (44), thilS(Bj ® H) is generated by the sets

(!t ®id)g o tip (J(B)), (1} ®@id)g 016 (J(B))).
[Yaes?rendaera|rer],

{Z(Tij (re) ® Dd(5i(ra)) ® 1)‘ re R} ,
{(@a®Dd(1®h) — (d(A1®h))(a®1)|a € Bj,h € H},
{(a ® Dd(5i(h) ® 1) — (d(5i(h) ® 1))@ ® D|a € Bj, h € H}.

One can see that the differential idgal Bjj ® H) is of the form (27), where the differential
ideal J,, (Bjj) corresponding ta2 (Bjj)/J, (Bjj) is generated by the following sets:

ml (B, (J(B)), (50)
{3 5 dnvae)|r e R}, (51)

{(d7jj(h))a — adrji(h)|a € Bjj, h € H}. (52)
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Replacing andj, we get the same differential ides)} (Bjj): the relationzi (S(h)) = T (h)
gives invariance of the set (52) under this replacement. To see invariance of the set (51), we
start from the identity

> i r) i (r@)d (i r3) i (r@) = 0, r € R
and obtain
Z Ti (S(raw)r@) i (r@2)dTij (r@3) + Z Tij (r))d (T (r2)) € Jm(Bijj).

Due to (49) and (51) the first term lies alreadyAp(Bij), thus{}_ jj (r1))d (7ji (r2)Ir €
R} C Ju(Bij). This shows that als&'/ (Bj ® H) =~ 2(Bjj/Ju (Bj)&T (H). O

Remark. All right ideals R determining a bicovariant differential calculd3(H) have
the property (49), because such right ideals are Ad-invariantyi.8(rx))r@) ® ro) €
H®R VreR.

Observe thatin the case described in the previous proposition the differential jd®g)
is in general larger than the differential idgdlBj; ) (compare (50) with formula (14) of [6]),
thus the differential calcull’, (Bj) := 2(Bjj)/J»(Bjj) andI'(B)/(kerm;,. 4+ kerm;.) are
in general not isomorphic.

Thus, we can define the differential algebra

I'n(B) = {(Vi)iel € GPF(Bi) N}:Fm (i) = Tf,iirm (Vj)} ,

where the homomorphismsl"r : I'(B;) — I, (Bjj) are the compositions of the maps
I'(Bj) — I, (Bj) induced by the embedding(Bjj) C J,(Bj) and n;.r. Because of
J(Bjj) C Jn(Bjj) the LC-differential algebrd®(B) is a subalgebra of;, (B). Further,
I, (B) is an LC-differential algebra naturally embedded#iP) by (y;)icr — (Vi ®LD)ies.
If (49) is fulfilled one has the identity

(7} ®id) i =7, ®id.

JIm

If the right ideal R determiningl” (H) does not fulfill (49), one can nevertheless con-
struct an LC-differential algebrg, (B) with I'.(B) as subalgebra, and this LC-differential
algebra onB will naturally appear in the theory of connectionsBnFor the definition of
this LC-differential algebra, we need the following remark about the differential calculus
induced on a subalgebra. LEtbe an algebra and let c C be a subalgebra. From a
differential calculus” (C), one obtains a differential calculus(A) by

alkeA}.

Let J(C) C £2(C) be the differential ideal corresponding to the differential calcuilges).
It is easy to verify that the differential idedl(A) C £2(A) corresponding ta"(A) is
J(C) N 2(A).

r"(Ay:=1{Y afdd ---da e ()

k
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Now recall that there are differential calcili (Bjj®H) andr/ (Bj®H).SinceBj®lisa
subalgebra oBjj QH,we obtain'differential calculf™ (Bij) andr/ (Bjj) with corresponding
differential ideals/' (Bjj) andJ/(Bjj) defined by

J(Bj) ® 1= J'(Bj ® H)N 2(Bj ® 1),

J/(Bj) ® 1= J/(Bj ® H) N 2(Bjj ® 1).
Fromgj,, (J/(Bj®H)) = J' (Bjj® H) one concludes the identig , (J/ (Bij)) = J' (Bjj),
and because afij(¢ ® 1) = a ® 1 it follows thatJ' (Bj) = J/(Bj). Thus, we can define
I (Bj) = I''(Bj) = I'V(Bj). There are injective homomorphisnis. : I, (Bj) —
I''(Bj ® H) given by

. (apdaqdap - - da,) = (a0 ® d(a1 ® Dd(a2® 1) -+ d(a, ® 1), (33)
which fulfill the idenitity

ij = dijr 0 Lijjn,,' (54)
Let us define the projectionzsjlr : I'(B;j) — Lu(Bjj) andnijr : I'(Bj) — L (Bjj) by

i, o, () = ®id) i (i ®L), v € I'(By), (55)

ij 5
4. oml (v)=(r] ®id)r(v;®L), y; € I'(B)). (56)

i r

Obviously, these projections are extensionsrjbfandnij , respectively. In terms of these
projections the LC-differential algebid, (B) is defined as

In(B) = {(Vi)iel € OB AR JTI-jrm (Vj)} : (57)

I'z(B)isasubalgebradf, (B), andthere exists an injective homomorphisip: I3, (B) —
I't(P) defined by

tr ((Vier) = i®L)ies.

Example. We consider a/(1) bundle over the spher§?. Assume that the algebra of
differentiable function<">° (U (1)) over U (1) is the closure in some Fréchet topology of
the algebra generated by the elemensndu* satisfying

uu* = u*u = 1.

With A(u) = u Q@ u, e(u) = 1 andS(u) = u*, this is a Hopf algebra. Ldty andUs be the
(closed) northern and the southern hemisphere, respectiUglylUs} is a covering ofs?.
We have a complete coverirdn, Is} of C®(52), In C C*®(5?) andIs C C*®(S?) being
the functions vanishing on the subsétg and Us, respectively. Elements @f*>°(Uy) =
C>®(8%)/Iny andC™®(Us) = C*®(52)/Is can be identified with restrictions of elements of
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C™(52) to the subset®y andUs, respectively. Sinc&/y N Us = S1, a transition function
s : C®(U (1)) — € (S1) defines a locally trivial QPFB. We choose

ns)(@P) = €2, st (E?) = e

(Hopf bundle).

Now, we construct a differential structure on this bundle by fixing the differential calculi
(C*®(UN)), I'(C*®Us)) and I'(C*(U(1))). I'(C*°(Un)) and I'(C*°(Us)) are taken
to be the usual exterior differential calculi where the corresponding differential ideals are
generated by all elements of the foadb — dba For the right-covariant differential cal-
culusI"(C*° (U (1))), we assume a honcommutative form. We choose as the rightideal
determiningl” (C*°(U (1))) the right ideal generated by the element

u+vu*—A+v)1,

where O< v < 1 (one obtains the usual exterior differential calculusifes 1).

Now, we are interested in the LC-differential algelita(C>(52)) coming from this
differential structure orP for v < 1.

It is easy to verify that the right ided has the property (49), thus the differential ideal
Jn (C®(S1)) is generated by the sets (50)—(52). The sets of generators (50) and (52) give the
usual exterior differential calculus &, but the set of generators (51) leadsgith= qdg,
i.e.d¢ = 0forg < 1. One obtains for the LC-differential algebfg (C*(52))

LYC®(§%)=C>(8?), TIHC®(SH)=I"(C®UN) @ I'"(C®Us)), n > 0.

The foregoing considerations suggest the following definition.

Definition 5. Let I"(P) be a differential structure on the locally trivial QPEB. An
LC-differential algebral’,(B) over B is called embeddable intde(P) if the local dif-
ferential calculi ofl, (B) arel"(B;) and if there exists the extensior) : I, (B) — Ic(P)
of ¢ such that

Xire © tr, (¥) = i, ()®L Vy € Ix(B) (58)

(mir, : Tg(B) — I'(B;) is the extension of;).

Remark. Fromﬂielkernirg = {0} it follows immediately thatpg is injective.
Proposition 11. The LC-differential algebral;, (B) defined above is the maximal em-
beddable LC-differential algebra, i.e every embeddable LC-differential algEp(&) is

embedded i}, (B) as a subalgebra of the direct sum of théB;) by y — (”irg Y)ier-
Proof. Letl;(B) beanembeddable LC-differentialalgebra. Itis clearffam, kerm;,, =
{0} that the mapping is injective. To show that its image i$in(B) one has to prove that
fory € I';(B)

7l o T (V) =7 0 () (59)
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(see (57)). By (58)r, has the form

tr, () = (Tip, ()®D)ic1  Vy € Ty(B).
By definition, the image ofr, lies in I'.(P), i.e.

(! @ id) i (i, (NI®L) = i 0 (xf @id) ) (7, (N)RD).
Using (54)—(56) one obtains (59). O

4. Covariant derivativesand connectionson locally trivial QPFB

This is the central section of this paper. We start by defining covariant derivatives, which
are more general objects than connections. Only the latter are adapted to the right “group
action” on the bundle. One of our main concerns will be to reconstruct all objects from
objects of the same type given locally in the trivializations. For this it is crucial to work
always with the covering completiafi(P) of a differential structure as given by formula
(34).

Definition 6. Let I'(P) be the differential structure gR and letI(P) be the covering
completion of" (P). Let horI'.(P) C I'.(P) be the subalgebra defined by
horIe(P) i= {y € I'(P)lxir, () € T(BN®H Vi € I}. (60)

A linear mapD; , : horI.(P) — horI¢(P) is called left (right) covariant derivative if it
satisfies

Dy, (hor I (P)) c hor I +1(p), (61)
Dy (1) =0, (62)
Di(tr,(y)o) = d(ryNa+ (—D"yDi(a), y eIg(B), achorlx(P), (63)

Di(atry(y) = Dr(eir,(y) + (=D"a(dir(y)), v € Ic(B), a€horl((P),

(64)

. Ie Ie
Dy, ®id) 0 AP = A 0 Dy, (65)
Dy (Ker xip lhorreP)) C KeT Xip Inorrypy Vi € 1. (66)

In this definition the lower indicelsor r indicate the left or the right case. The simultaneous
appearance of both r means that the corresponding condition is fulfilled for both the left
and the right case. This convention will be used in the sequel permanently.

Remark. In the case of trivial bundle8 ® H with differential structurel”(B)®I" (H),
where hotI"(B)®I'(H)) = I'(B)®H, condition (66) is trivial. Conditions (63) respec-
tively (64) have the form

Di(y®h) = dy®h + (-1)"(y®LD;(1Qh), y e I'"(B), (67)
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D, (y®h) = Dy (1® h)(y®1) + dy &®h. (68)
Eq. (65) becomes

(D, Qid)o (id® AT) = (d® AT o Dy, (69)
Proposition 12. Left(right) covariant derivatives are in bijective correspondence to fam-
ilies of linear maps4; ,, : H — I'Y(B;) with the properties

Apn() =0, (70)

7l (A () = Y i (), (A, (he))Ti(h@) + Y 7 (h@)d i (h).-
(71)

Remark. Note that (71) is a condition i, (Bjj) (see the considerations at the end of the
foregoing section).

Proof. Because of (66) a given left-covariant derivative on RgfP) determines a family
of left-covariant derivative®, : I'(B)®H — I'(B;))®H by

Dli o Xirc = Xirc © Dl- (72)

It follows the identity D;((vi)ier) = (Dy;(vi))ier- Since(Dy, (vi))ier € Ic(P), the Dy,
satisfy

(!t ®id) i 0 Dy, (i) = dij o (! @id)j 0 Dy (). (viier € hOTe(P).  (73)
One obtains a family of linear maps, : H — I''(B;) by
A (h) = —(d®e) o D, (1® h). (74)

Now let us notice that the restriction of the right coactith = (id® A)’" to the horizontal
forms I'(B) ® H of a trivial bundle just coincides witld ® A. Moreover, this map can
be composed withd ® ¢ ® id, and it is immediate frome ® id) o A = id that we

have

(Id ReR |d) ] A71;|F(B)®H =id. (75)
Using this formula, (67) and (69) one obtains the identity
Dy (y®h) = dy®h + (=" > "y A (h1)®h). y e I™(B). heH. (76)

Because of (62), thei;, fulfill (70). To prove the property (71), we need the following
lemma.

Lemma 3. Let B be an algebra H be a Hopf algebral"(B) be a differential calculus
overB andI"(H) be a right-covariant differential calculus ovéf. LetD; : I'(B)® H —
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I'(B)®H be aleft-covariant derivative on the trivial bunde H. LetJ C I'(B)®I(H)
be a differential ideal with the properiyd ® A’")(J) c J ® H. Then, one has

D;(JN(I'(B)YRH)) C JN(I'(B)®H). (77)

Proof of thelemma. By Lemma 1 there is an idedl c I"(B) such that
JN(I'(B)®H) = J&H.

J is a differential ideal. Le} ", yx&hy € J&H C J. SinceJ is a differential ideal one
obtains

D dn®hi+ (-1"Y w®dh € J, € I"(B).
k k

The second summand lies QI (H) c J again because is an ideal. It follows that
Y, dv®hy € dJ®H C J N (I'(B)®H) and one obtaingJ C J, thusJ is a differential
ideal.

Applying D; to 3", i ®hy € J®H C J leads to

Dy (Zyk®hk> =Y dy®hi + (D" “u DA @ k), v € I'"(B).
k k k

Sins:e the image oD, lies in I'(B)®H, the right-hand side of this formula is an element
of J®H. O

Since the ke(mj'. ®id) C I'(B;)®I'(H) are coinvariant differential ideals (with respect
to the coactiorid; ® A", see (38)), the foregoing lemma shows (ker(z} ® id)ri N
(I'(B)&H)) C ker(r @ id) i N (I'(B)®H). This allows to define linear maps; :
I'(Bj® H) — I''(Bj ® H) by

D} o (@i @id) i = (wi ®id) i 0 Dy,. (78)

Applying ('} @ id) i to (76) fory € I'°(B;), a = 7 (y), one obtains

Dla®h) =@@a®1)A®N-@®D Y (v} @id) i (A, (ha) ® DA he).

(79)
Let (34)ier € hor I.(P), in particular
() @id) i (vi) = i 0 (x] @ i) (1) (80)
SinceD;((yi)ier) = (Dy; (¥i))ier € hor I.(P) it follows from (80) and (78) that
D} o (xh ®@id) i (vi) = $ij o D] o (w} @ id) (7). (81)

Combining (80) and (81), one obtains
Dg = Pij © D}jj © Pjip- (82)
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Taking advantage of (15), (53)—(55), (79) and (82), one computes
DlA®m ==Y"d (i (A,(h@))A®h@) =i o D], © i (L& h)
= ¢ijp o D}]jf (Z Tij(h1) ® h(2)>
=i (Dt @ri(h@)A® h)
=Y 4 @), (A ) A @ ha))
=Y di. (dTj(hay)Ti(h2)(1® he)
-3 i, (i (h(l))(ﬂijrm (Ar; (h2)7i (h3)) (1 ® hay). (83)

Applying the Leibniz rule to the first term of the last row and usigj (h(1))7ji (h(2)) =
£(h)1, one obtains the identity

D ot @ (A (@) A® h)
=Y i @i ha)), (AL (h@)Ti(h@) (A ® ha)
+3 4, @ (ha)d(Ti(h2)) (L ® hg). (84)

In order to arrive at (71), we need to kill the& h-factor. This is achieved by using a
projection Py : I'(Bj ® H) — {y € I''(Bj ® H)|(id ® A)""(y) = y ® 1} onto
the elements of“"_(Bij ® H) being coinvariant under the righff coaction(id ® A)"" :
I''(Bj ® H) — I''(Bjj ® H) ® H (see also (38) and (39)Piny is defined by

Prv(p) =Y poyS(p). p € I'(Bj ® H). (85)
Note thatPiny (0 (1 ® h)) = &(h) Pny(p). Applying Py to the identity (84) leads to

iy Gl (A )=t (@i (h), (Al (h@)Ti(h))

+ ) i @ (hay)dTi ().

Due to the injectivity oﬁfjr , this is identical to

7l (A ) =Y Ti(ha)w, (A)(he)Ti(ha) + Y ti(ha)dTi(hz)  (86)
in I, (Bij).

Now, we prove conversely that every family of linear maps: H — r'1(B;) with the

properties (70) and (71) defines a left-covariant derivative. Assume that there is given such
afamily (A;);. EveryA;, defines by

Dy, (y&h) = dy&h + (1" y A (ha)®h. y € IM(B), heH

a left-covariant derivativé;, on I"(B;)® H. The properties (61)—(63) and (65) bf,, are
easily derived from the above formula. One has to showEhéty;)icr) := (Dy, (¥i))ier,
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(vi)ier € hor I'.(P) is a covariant derivative on hdi.(P). Because of (70)p; fulfills (62).
The conditions (63) and (65) follows from the corresponding propertig€3,oft remains
to prove that the image d, lies in I'.(P), because then it also lies in hbg(P). (This is
due to the fact that all the images of thg obviously are in"(B;,)®H.) Then, it is also
obvious from the fact that thg;,, are the projections to th¢h components that condition
(66) is fulfilled. The image oDy lies in horI¢(P) if the family of the D, fulfills

() @id) i 0 Dy, (i) = i 0 (/] ®id)p; o Dy, (yj) Y(yiier € horIe(P). (87)
By Lemma 3, the covariant derivativéy, give rise to mapsD}f_ defined by
D} o (! ®id) i = (! @id) i 0 Dy,
One has
D}A®h) == (x} @id) i (A (ha)) @ DA ® h2), (88)
and we will show that (71) yields the identity
D}';. = Pijr o D}j, ° i
One computes foy € I (Bjj)
D} (1)A® h))
= dy)A® M+ (D", (D] AL®h
=d. @A) + D)"Y (il (A (ha) (A ® he)
=1 @)ABM+H(=1"T Y il (v (haw, (A (h2)5i(h@) (L ® hea)
+D Yl (vl ()i () (L@ he)
= iy 0 D} 0 i (y(1® h).
Thus, one obtains faw;);c; € horIt(P)
D} o (rh @ id) (1) = D} o gy, o (nf ®id) s (v)=dy- 0 D}, o (! @ id) (v,

and (87) follows.
It is immediate from the construction (using (75)) that the correspondence is bijective.
The proof for right-covariant derivatives is analogous. In this case one uses

Dy, (y®h) = dy®h + (=1)"*1 Y " A, (hw)y ®h) (89)
fory € I'*(B)). O
Remark. Obviously, a family of linear mapa; : H — I'(B;) fulfilling (70) and (71)

determines at the same time a left and a right covariant derivative. Consequently, there is a
bijective correspondence between left and right covariant derivatives.
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Proposition 13. Let D;, : horI:(P) — horI:(P) be a left (right) covariant derivative
and letl, (B) be embeddable intbe(P). D, , fulfills

Di(r,(P)e) = (dCr,(y)e + (=D "ir,(y)Di(@), vy € I(B), a€horle(P),
(90)

Dy (atr,(¥) = Dr(@)ir, () + (=1"a(dir,(y)), y € [y(B), a € horI{(P).
(91)

Proof. Let (y;)ier € horlI.(P) andp € Fg”(B). One ha3pg (p) = (”irg (p)®1);c; and
Di((vi)ier) = (Dy;(¥i))ier- One calculates

Di(tr, (D) (Vidier) = Di(((mip, (©)®V)yi)ier) = (D, (i, (P)®DYi))ier
= ((d(7ip, (©)OD)Yi))ier + (=D" (i, (0)®L) Dy, (vi))ier
= (d(r,(0))Vi)ier + (=1 "tr, (0) Di((Vi)ier)-
The proof for right covariant derivatives is analogous. O

Now, we are going to define connections on locally trivial QPFB. It turns out that con-
nections are special cases of covariant derivatives. We start with a definition dualizing the
classical one in a certain sense.

Definition 7. Let I'(P) be a differential structure o® and letI(P) be the covering
completion of" (P). A left (right) connection is a surjective left (righ)-module homo-
morphism hoy, : IX(P) — hor [X(P) such that

hor?, = hor,, (92)

(hor,, ®id) o A71;° = A71;° ohor, (93)
and

hor,  (Ker xi,) C Kerxi,, Viel. (94)

Remark. Conditions (94) in this definition are needed to have a one-to-one correspondence
between connections dhand certain families of connections on the trivial bundte® H .
On a trivial bundleB ® H condition (94) is obsolete.

Remark. For a given left (right) connection there is a vertical left (rigPBsubmodule
ver, , [2(P) such that
3P) = ven, IE(P) @ horT}(P),

where the projection vy : I'}(P) — ver,,I'}(P) is defined by ver, := id — hor,,.
Obviously, ver, also fulfills Egs. (92)-(94) and, moreover, kgr = horlX(P). Con-
versely, a module map ver satisfying these conditions defines the connection het
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1— ver; .. Thus one can say that a connection is nothing else but the choice of a “vertical”
complement to the canonically given submodule of horizontal forms.

On a trivial bundleB ® H with differential structurel”(B)&I"(H) exists always the
canonical connection hgrwhich is at the same time left and right. The existence of hor
comes from the decomposition

(F(B)QT (H))* = (I''(B)®H) & (BT (H))

(direct sum of(B ® H)-bimodules), which allows to define hoas projection to the first
component,

hore(y®h) = y®h, y e I''(B), h e H,

hore(a®9) =0, a € B, 6 € I''(H).
Lemma 4. For a given connectiohor; . onP there exists a family of connectiohsr; ,,
on the trivial bundlesB; ® H such that

Xir, © hor, =hor ., o xip.. (95)
Proof. The existence of linear map hosatisfying (95) follows from (94). The hpy, are

connections oB; ® H: because of the surjectivity of the,, thehor, map onta™(B) & H.
To prove condition (92) one computes

hor?, © xir, = Non.; o xir, o hon, = xi oo, = xi, o hon,, = hony, o Xi,.
The condition (93) is fulfilled because of (35). O

By Definition 7 and the foregoing lemma a connection ;hohas the following
form:

hon » ((vi)ier) = (hon », (vi))ier,  (vi)ier € horle(P), (96)
which also means that the family of linear maps;hosatisfies

(! ®id) p o hon,, (i) = ¢, o (x{ ®@id) -, o honr, (¥)) (97)
for (y)ier € I (P).

Proposition 14. LetR c H be the right ideal corresponding to the right-covariant differ-
ential calculus” (H). Left (right) connections on a locally trivial QPFB are in one-to-one
correspondence to left (right) covariant derivatives with the following property: The cor-
responding linear map4, ,, fulfill

R C kerA;, Viel, (98)

S™YR) c kerA,, Viel (99)
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Remark. Thus left (right) connections are in one-to-one correspondence to linear maps
Ay, fulfilling (70), (71) and (98) (respectively (99)).

Proof. We perform the proof only for left connections. It is fully analogous for right con-
nections.
A left connection hardetermines a family of linear maps, : H — 'Y(B;) by

Ay, (h) = —(id ® &) hor, (1®dh).
From (93) and (75) one concludes the identity

hon, (1@ dh) = — >~ A, (h@)®h ). (100)
Therefore A;; have the propertR C ker Ay,

0= hon, (1R (r@)dra) = —A,(N®L, reR.

It remains to show that the;, fulfill (70) and (71).
Eq. (70) is fulfilled by definition 4, (1) := (id ® ¢) o hor, (1 ® d1) = 0).
Because of (94), (95) and (37), one hasl,hber(n} ®id) i) C ker(n‘; ®id) i, and the

linear maps hdi_r defined by
hot} o (x! ®id) - = (w} @ id) 1+ o hor,
exist. It follows that
hot) (@@ @ h)) = = > (! (A, (ha))A® hep).

On the other hand, by an analogue of the computation leading to (82) (using (97)), one
obtains

hOIJZJi = dij; 0 hofljj o Bji -
Using now the last two formulas, on can repeat the arguments written after formula (82) to
obtain formula (71).
Now assume that there is given a left-covariant derivafiye whose corresponding

linear mapsA;; satisfy R C kerA;,. There exist left connections hor. (rY(B)H&H) @
(Bi®I'Y(H)) — I''(B;)®H defined by

hon, (y®h) := y&h,  hon, (a®hdk = — " aA, (k1)) ®hkz). (101)
To verify this assertion, we define linear maps,l%or(F(Bi)é)Q(H))l — I''(B))®&H by
hor? (apday ®h) = aoday®h,  hor? (a®h®dk) = — > " aA (k) @hky).

The B; ® H-subbimodules3; ®J1(H) are generated by the s¢is0 > S~1(r2))dry)|r €
R}. One has

Bi®IY(H) = (B;®RY(H))/(B;®J (H)) = Bi®Q (H)/J*(H).
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UsingR C kerA, itis easy to verify that the linear maps IfosendBié)Jl(H) to zero,

i.e. there exist corresponding linear maps;hon (I'(B))®I' (H))!. As a consequence of
their definition these linear maps are connections. One easily verifies the identity

hor, od = Dy |p.gH. (102)

where theD;, are the local left-covariant derivatives defined by (72).
Now, we define a linear map hochcl(P) — ®ie;'(B)®H by

hon (v)ier) == (how, (vi)ier,  (vi)ier € TE(P).

It remains to prove that the image of hdies in I'X(P). Then it will follow immediately
from the properties of the local connections htfat hoy is a connection.
To prove hor(I'}(P) c I'X(P), we need a lemma.

Lemma5. hor, ((xi (kerx ;N C (i (ker x )t

Proof of the lemma. Using the form (43)—(47) of the generators ﬁf(Bij ® H) one
finds easily that the differential calculus’'(Bj ® H) has the formI (Bj @ H) =
(F(Bij)®F(H))/J, where the differential ideal is generated by

{ > 1 (r)d i ra)®L1+ Y 1 (r) i () ®S L (rz)dra) ‘ re R} : (103)

{Z(adtji h) — (d7 (h))a)®1‘ heH, ac B,-} . (104)

These elements arise from (43)-(47) applying the nthp.r @ 2(Bj ® H) —
F(Bij)®F(H). Then, by definition] = (nA;.r ® id) (xi - (ker x ;).
The factorization maiﬂfjr : T'(Bj)®I'(H)) — I''(Bj ® H) fulfills

id;, o (7} ®id) = (! ®id)r. (105)
Since hoy, is a left module homomorphism and Kel;r ®id) = kern;F®F(H), one has
hor, ((ker(r|,. @ id)") C (ker(r},. ®id))*, (106)
thus hoy, defines a connection h'lbr (I'(Bj)&I'(H) — r'Y(Bj)®H by
hotl o (x'_ @ id) = (x', @id) o hor,. (107)
Because of (37) and (106) and

(! @id) o hor, (xi,- (ker xj,.)) = idt o hor) (J)

r
which is immediate from (105) and (107), to prove the assertion of the lemma, we have to
show thatdfjr ohofl{, (J) = 0. Note that the part of generated by (104) lies in the horizontal
submoduIeFl(Bij)éz)H and is therefore invariant under I’;IiorConcerning the part of
generated by (103), we argue as follows. Sincéii hem left module homomorphism, it is
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sufficient to consider the product of the generators (103) with a general elémgrit) €
Bjj ® H on the right. UsingR C kere, such an element can be written

Z Tij (r2)d i (r))a®h + Z Tij (ra) 7 (r)) ®S 1 (r3))drz)) (a ® h)

=Y T (r@)dTi(ra)a®h + Y 1 (r@)Ti (r)a®S (r@)d(ra)h),
re€R, he H, ac Bj.

Using (101),R C kere, (71), R C kerA;; and (53), one calculates

o hodj" (Z 7 (r@) (T (r@))ah + 3 i () (r(l))a®5_l(r(3))d(r<2)h)>
=>4 1, @Tij (r2)di (r@))) (1 ® h)
- Z t 1 (@i (13 Tji (r(1>)ﬂjn,l (A (rh@)(1 ® he)
= Z t 1, (@Tij (r)di (r@))) (1 ® h)
=Dt @0 )T (@) T @ h@) i @ @), (AL (r@h@)(18h@)
_ Z ijrm (aTij (ra) i (r) Tij (ryh (1) dTi (r@h @) (1 ® h(3)
=3t (@7 r@)dT ) (1@ h)
_ Z ‘fjrm (atij(h()Ti (h(g))nlfrm (A;;(th2)) (1 ® ha))
- . (@tij(r)di (ra))(L® h) = 0.

The last identity comes from the fact th&tis a right ideal.
Let (y;)ies € T(P). We have to prove that

(7} ®id) o hor, (v;) = ¢ o (] ®@id)r o hon, ().
y; has the general form

vi= > xi(fddxi(fh. . fleP.
k
Using the gluing condition of (34) and (37) one verifies thahas the form

vi= > xR (fH+p.  p e xjrkeryp).
k
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Now, one obtains from Lemma 5, (73) and (102)

() ®id)r o hor, (1)
= (j‘[; Qid)r o hOI’]i (ZXi(ka)dXi(fkl)>
k

=Y (@h @id)r (i () Dy, (xi (£))
k

= ¢jj, © (n,»j ®id)r o (Zx;(fko)Dz., (Xj(fkl)))
k
= i o (x} @id)r o hon, (x; (FOdx; (fE + p)
k

=Y ¢ij, (x} @id) o hon, (;),
k

and the assertion is proved. O

Proposition 15. There exists a bijection between left and right connections

Proof. A left connection corresponds to a family of linear ma@s );<; satisfying (70),
(71) and (98). The linear maps,, := —A;, o S fulfill (70) and (99), thus the4,, define
right connections on the ftrivilizations. One has to prove that the fafdily);c; satisfies
(71). Usingrjj o S = tji and)_ d(jj(h1)7ji (h2)) = 0, one calculates

7wl (Ar () = —=m}, (A (S(h))
== 1 (S(h<3>))ﬂ,!;,’l (A1; (Sh))Ti (S(h())
= 1 (S(h@))dTi (S(h))
=— Z Tjj (h(3))71,-jrm (Ar; (S(h))Tij (h(1))
- Z Tji (h2))dij (h(1))
=-Y 1 (h(1))JT,-ij (AL (Sh))Ti(h@) + Y Tij (hw)dTji (h(2)
= Z Tj (h(l))ﬂl!}m (Ar; (h2)Tji(he3) + Z Tij (h))dTji (h2). O

Remark. Aleft(right) connection hat, and the corresponding left (right) covariant deriva-

tives D; . are connected by hor o d = Dy ,|p. Note that hot, can be extended to the
submodule

I(P) :=={y € IL(P)Ixir,(v) € (F'(BH®H) & (I'(BHT (H))}.
This means that the equation

hor, od = Dy,
is valid on horl;(P)).
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To discuss curvatures of covariant derivatives and connections, we introduce the notion
of left (right) pre-connection forms.

Definition 8. A left (right) pre-connection fornay , is a linear mago;, : H — I'}(P)
satisfying

(1) =0, (108)
Ap(@i() =Y wo(h@) ® S(ha)h, (109)
Ap(@r(h) =Y wr(h@) ® @S hw), (110)
(1= hore) o xip (@i () = — Y 18S(hay)dhg Vi e, (111)
(1= hore) o i, (wr(h)) = — Y 1&(dh2)S (h) Vi el (112)

Proposition 16. Left (right) covariant derivatives are in bijective correspondence to left
(right) pre-connection forms

Proof. Letw; be a left pre-connection form; determines a family of linear maps, by

A (h) = —(ild ® €) o horc o X, (w;(h)). (113)
Because of (108), the;, fulfill (70).
Using

(1 —hore) o xip (wr(h)) + hore o X (w(h)) = Xip, (wi(h)),
(109) and (111), formula (75) and (113) one verifies easily

Xirg (@ () = = > 18S(ha)dha) — > A, (h2)®S(hw)h). (114)
Since

(ﬂ} ®id) o Xip (@1 (h)) = ¢ij- o (7] ®id) o Xjrs (@i (h)),

an easy calculation (using (15) and the projectiyy (85)) leads to (71).
We want to prove that the left-covariant derivatig determined by thel;, is

Di(y) =dy +(=1" Y _voo(vw), v €horl(P). (115)
It is sufficient to prove that foy € horl'l' (P)
Xir @y + (D" Y yooi(va)) =dy®h + (=" Ty Ay (ha)@h2)
= Xir, © Di(y).

Xir. (¥) has the general form

Xi ) =D v ®h;, yfel"(B), hfeH.
k
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Using (114) one obtains
Xire (d)/ + (=" J/(O)wz()/(l)))
= (Zdy/‘@hf + (D)"Y yfedh + (=D"Y > (v @ hf g i (@1 (h{f(z)>)
k k k
= dyf&hf + (—1"Y “yfedht — (—1)"Y Y (v @ i) ) ARS(hf 5)dH 3)
k k k
—(=D"D > (v @ Bl ) (AL (hf 5 @S (Y 5)dH )
k
=dy®h+ (=" 7y Ay (ha1) ®h(2).
Note that the following identity is satisfied:
Dy (y®h) =dy®h + (=" "y Ay, (h)®h )

=d(y®h) + (=1 Y _(y®h) xir, (@1 (h2))). (116)

Assume now that there is given a left-covariant derivatiye In terms of the corre-
sponding linear mapd,,, one obtains a family of left pre-connection forms : H —
(I'(B)®T (H))* by

oy, (h) = =Y 1S (hw)dhz — Y A (h2)®S(hw)h).
Using (71), one obtains

('t @ id) (e, () = @i © (1} @ id) (e, (h),
thus

wi(h) == (wy;(h))ier

defines a left pre-connection form : H — Fcl(P).
One easily verifies fop&h € I'" (B))QH

Dy, (y®h) =dy®h + (=" "y Ay, (h)®h )
=d(y®h) + (1" Y _(y®ha)w;; (h). (117)
Using this formula it follows that
Di(y) =dy + (=" Y_ vooi(va) (118)

for y € horrl (P). Itis immediate from the formulas (116) and (117) and Proposition 12
that the correspondence is bijective.
For right-covariant derivatives the proof is analogous. O
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Remark. Note that the foregoing proof also shows the bijective correspondence between
left (right) pre-connection forms and families of linear mays, : H — I'(B;) fulfilling
(70) and (71).

Definition 9. A left (right) pre-connection forma; - is called left (right) connection form,
if

R C ker((id®e) ohorgo xip, o) Viel, (119)
STHR) C ker((id ® ) o horg o i, o w,) Vi€l (120)
is satisfied.

Proposition 17. Left (right) connections are in bijective correspondence to (gfiht)
connection forms

Proof. The claim follows immediately from Propositions 14 and 16 and (113). O

Remark. Note that classical connection forms are related to the connection forms con-
sidered above as follows. Let a classical principal bundle with total sgamed structure
groupG be given. A classical connection form is a Lie algebra valued 1-fowhtype Ad

on Q. Let X be a vector field o, and leth € C°°(G). Then, the formula

w(h)(X) = —a(X)(h)

defines a left connection formy; in the above sense. Condition (119) wikth= (kere)?2
means thaf can be interpreted as a Lie algebra valued form. In this case (109) and (111)
replace the usual conditions (type Ad, condition for fundamental vectors) for connection
forms.

Definition 10. The left (right) curvature of a given left (right) covariant derivative is the
linear mapD?, : hor I'(P) — hor Ie(P).

Definition 11. Let w;, be a left (right) pre-connection form of a left (right) covariant
derivativeD; ,. The linear maps2; , : H — Fcz(P) defined by

Q2i(h) :=doy(h) = Y or(ha)orha), (121)
2,(h) = doy(h) + Y or(h@)or(h) (122)
are called the left (right) curvature form of a given left (right) covariant derivative.

Remark. In other words, we take an analogue of the structure equation as definition of the
curvature form.

Proposition 18. The left(right) curvature of a given left (right) covariant derivative is
related to the lef{right) curvature form by the identity
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Di(y) =) voSw), v €horlu(P), (123)

DX(y) =) 2:(vapvo, v €horle(P). (124)

Proof. Because of the one-to-one correspondence between covariant derivativesidn
certain families of covariant derivatives on the trivilizatiaBs® H, it is sufficient to prove
this assertion on a trivial bundlB ® H. In this case, the linear map, belonging to a
left-covariant derivative has the form

o) == (18 Stha)dhe)) = > (Ath@)@S(ha)he)-
Therefore, one obtains fae;
doy(h) =) wi(ha)or(h)
=—18 Y " dSha)dhg— Y " dA(h@)®S(hw)h@+ Y  Aith@)®ASha))he)
+ Y Ai(h2)®S(haydhg — 18 Y S(h))(dhz)S () dha)
- Z Ar(h2)®S(h1)h(3)S (hay)dhs)+ Z Ar(h)®S(h(1))(dh2))S(h3)hs,)
- Z Ar(h2) Ar(hs)®S (1)) S (ha)he)
=— Z dA (h(2)®S (h))h(3) — Z Ar(h2)A1(h3)®S(h)h ),
which leads fory € I'*(B) to
> (y®h@)2h@) =— Y ydAha)®ha — Y v Aithw) Aih2)®h).
On the other hand, the left-hand side of (123) is
(DV2(y @ hy=Di (dy&h — Y (=1)"y A (ha)&heo))
= —(=D)" > " @dy)Aih@)®h@) — (—D" Y (dy)Ai(h)She)
=Y ydAh@)®h@) — Yy Aiha) Ai(h2)®h)
=- (Z ydA (ha)®ha) + Yy A (h(l))Al(h(2)®h(3))
= (r®ha)Qi(he).
For right-covariant derivatives the proof is analogous. O
Remark. The proof shows that there is a linear még : H — I'*(B) defined by

Fi(h) := dA () + Y Aith@) Ai(hea), (125)

Fr(h) == dA.(h) = > Ar(h@)Ar(h) (126)
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which is related to the left (right) curvature form of a given left (right) covariant derivative
on a trivial QPFB by

Qi(h)y ==Y Fi(h@)®S(hw)he), (127)

2,(h) = — Z Fr(h(2)®h(3) S (h)). (128)

In the case of a general locally trivial bundle one arrives at a fafily : H — I'%(B))

of linear maps, called local curvature forms, which are related to the local connection
forms A;,, by (125) and (126). Using formula (71) and the Leibniz rule (taking into
account) 7jj(h1))Tij(h2) = e(h)1) it is easy to verify that the local curvature forms
satisfy

7l (F () =Y tij(ha)), (Fir,(h@)7Ti(hs). (129)
An analogue of the Bianchi identity does in general not exist.

Now, we make some remarks about the general form of the linear apsH —
I'Y(B;) corresponding to connections on a locally trivial QPFB. For this we use the func-
tionalsX; corresponding to the right ide&l, which determines the right-covariant differ-
ential calculus™ (H) (see [26,27] and Appendix A). Let thié + R < kers/R be a linear
basis in kee/R. Then every elemerit— £(h)1+ R € kere/R has the form¥; (h)h! + R.
Since 1€ kerA; and R C kerA4, it follows that A;, is determined by its values on
thehk,

A () =Y X () Ay, (k).
k

In other words, to get a connection on the trivial pieSes H, one chooseAf e I''(B)
and defines the linear maf, by

Ay (h) = Zxk(h)Ajf.
k

The connections so defined on the trivial pieBe® H do in general not give a connection
on the locally trivial QPFBP, because they do in general not fulfill the condition (71). If the
right idealR fulfills (49), one can rewrite the condition (71) as a condition for the one-forms
A¥ e r'Y(B;). Recall that in this casE’ tj (r1))dTji(r2) =0 V¥r € R (cf. (51)), thus
> miha)dTij(he) =Y Y X(h)wi(hfy)dT (hfy).
k
Furthermore, the condition (49) leads to the identity

> T (ha)Xih@)Ti(h@) = Y 1i (S(ha)h@)Xi(h)

=S ) Y G (SUky)hly) (k).
k
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Putting nowA, (h) = Zka(h)Af in (71) leads to the following condition for the forms
Ak

. . (A]) = pr (S(hy) (3))951(h(2))ﬂ (A]) + 7ij (h{y))d i (hy).

Note that, inthe case= {1, 2}, it follows from the last formula that there exist connections.
One can choose, e.g. one- form§ on the right, and solve the remaining equationA(ir
due to the surjectivity Of[l

One can regard the s@q of all left (right) covariant derivatives as a set with affine
structure, where the corresponding vector space is characterized by the following proposi-
tion.

Proposition 19. A linear mapC; , : horIc(P) — horIc(P) is a difference of two left
(right) covariant derivatives if and only if

G, (1) =0, (130)
Cy.,(hor I (P)) c hor I +i(p), (131)
Ci(ya) = (=1)"yCi(@), vy €I (B), a€horlc(P), (132)
Crlay) = (=D"Cr(@)y, y €Tc(B), ae€horld(P), (133)
(Crr ®id) 0 Ap,, = App, 0 Crp. (134)
C1.r(Ker xir, lhorreP)) C Ker Xir Ihorrypy Vi € 1. (135)

This is immediate from Definition 6.
Because of (135) such a map, defines a family of local maps;,,, by

Cl,ri o Xi[‘c = Xirc o Cl,r~

It is immediate that the set of left (right) connections is an affine subspa®® ,ofThe
elements of the corresponding vector space have the following additional property:

({[d®e)oC,(1®r)=0, Viel, VreR,

([d®e)oC,1®r)=0, Viel, VYreSiR).

5. Example

Here we present an example df&l)-bundle over the quantum spaﬁ%w. The quantum
spacesgqu is treated in detail in [6] and we restrict ourselves here to a brief summary.

The aIgebraP(qud)) of all polynomials over the quantum spasén) is constructed by
gluing together two copies of a quantum disc along its classical subspace.
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Definition 12 (cf. [16]). The algebraP (D)) of all polynomials over the quantum digz,
is defined as the algebra generated by the elemeaitsix™* fulfilling the relation

x*x —pxX = (1— p)l, (136)
where O< p < 1.

P(D,)is a*-algebrain a natural way. Léx(S1) be the algebra generated by the elements
u, u* fulfilling the relation

ul* =utu =1.

P(S1) can be considered as the algebra of all trigonometrical polynomials over the circle
S1. There exists a surjectivehomomorphismp,, : P(D,) — P(S*) defined by

dp(x) = u, (137)

which can be considered as the “pull back” of the embedding of the circle into the quantum
disc. The aIgebraP(qu(ﬁ) of all polynomials over the quantum spa% is defined as

P(82) = {(f. ) € P(Dy) & (Dbp(f) = by (2} (138)

with 0 < p,gq < 1. It was shown in [6] that this algebra can be regarded as the algebra
generated by the elemenfs, f_1 and fp fulfilling the relations

fraAi-dhifra=(p -9 fo+ Q- pl, (139)
fofi—pfifo= 1~ pfi (140)
f-1fo—plofo1 =0 - p)fa, (141)
1 - fo(frf-1— fo) =0, (142)

where the isomorphismis given by — (x, y), f_1 — (x*, y*) andfp — (xxX*, 1). (Here,
the generators of (D,) are denoted by andy*.) As was proved in [6], th€*-closure
C(Séqd,) of P(qud,) (formed using representations in bounded operators) is isomorphic to
the C*-algebraC (S52,) of the Podles spher€?,. for ¢ > 0.

Now, let us construct a class of QPFBs with structure grdgp) and base spac%w.
The algebra of polynomial® (U (1)) over U (1) by definition coincides with the algebra
P(SYH. With A(u) = u®u, e(u) = 1andS(u) = u*, P(U (1)) is aHopfalgebra. According
to Proposition 4, we need just one transition functign: P(U (1)) — P(S1) to obtain a
locally trivial QPFB. We define transition functiongy, n = 0, 1, . .. as follows:

‘L'](_;) (u) :==u", tl('zz)(u*) =u™".

It follows that
ré'i) W) = u™, tz(q)(u*) =u",

We obtain locally trivial QPFBs (P™, Apaw, P(U(1)), P(Sg ), b, ((xps KT )),
(x4, kermy))) corresponding to these transition functions (see %rmulas (15) and (16)),
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where: is the canonical embedding(s3,,) ¢ P™ andr,, , : P(S5,,) — P(D, ) and

Xp.g - 2 OREN P(D, ) ® P(U(1)) are the restrictions of the canonical projections to
P(S5,) andP™, respectively.

Proposition 20. The locally trivial QPFBsSP™ and P are nonisomorphic fon = m.

Proof. AssumeP™ ~ P According to Proposition 5, it follows that there exist homo-
morphismsoy : P(U(1)) — P(Dp), 02 : P(U(1)) — P(D,) with values in the centres
of P(D, ,) suchthat Eq. (21) is true, in particular, for the generator O

Lemma6. The centre o (D)) is trivial, Z(P(D,)) = C1.

Proof of the lemma. We make use of the fact that(D,) has a vector space basis
(xkx*)>0,1-0 (see [6, Lemma 2]). Thus, ang € P(D,) can be written ag = f- +

S _ofuxkx =k wheref_ is a linear combination of element§x*! with k +1 < n. Now,
the assumptiorf = fx, together with the relation (136), immediately leadgite= p"* fi,
k=0,...,n,i.e. fr =0fork =0,...,n — 1. Analogously, the assumptiatf f = fx*
yields fy = p*fi,k =0,...,n,i.e. fr =0fork = 1,...,n. Thus, if f is in the centre,
frx =0fork =0, ..., n. Repeating the argument, the degreefa reduced to 0, which
proves the lemma. O

Proof of the proposition (continued). Due to the lemma, the homomorphismsandos

can be considered as characters?@¢t/ (1)). Writing now (21) forh = u, r{;) on the left

m)

andrl(2 on the right leads ta”™ = iu", » € C, which is possible only fom = n, since
the powers of: form a basis ofP (S1). The proposition is proved. O

We remind the reader that we assumee v, ¢ < 1, so thatp, g cannot be roots of
unity, which makes the arguments in the above proofs meaningful.
Note thatP© is the trivial bundIaD(quqb) ® P(U(1)). Due to the foregoing proposition,

all the otherP™ are nontrivial.
In the following, we restrict ourselves to the case- 1.

Proposition 21. LetJ C P(D,) ® P(D,) be the ideal generated by the element
(XX —1) @ (yy* — 1).

Moreover, let J be the ideal in the free algelftda, a*, b, b*) generated by the relations

a*a —gad = (1-¢g)1, (143)
b*b — bl = (1 - p)1, (144)
ba = ab, ba* = a™b, b*a = ab*, b*a* = a™b*, (145)

(1—aa")(1—bb*) =0. (146)
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Then, we have the isomorphisms*edlgebrasP® ~ (P(D,) ® P(D,))/J ~ Cla, a*,
b, b*)/J.

Proof. (P(D,)® P(D,))/J is generated by

a=1y+J, at =1 y*+J, b=x®1+1J, b*=x*®@1+J.

It is easy to see that — a, b — b defines an isomorphisiP (D)) ® P(Dq))/f —
Cla, a*, b, b*)/J. It remains to prove a second isomorphy, @§ ~ C(a, a*, b, b*)/J.
Consider the following elements R®:

a=0AQu,yQu), at=1Qu*, y*u"),
b=(xQu",1®u"), b =" Qu,1®u).

A short calculation shows that these elements fulfill the same relations (145) asithe
b andb*. Thus, there exists a homomorphigi C(a, a*, b, b*)/J — PD defined by

F(a) :=a, F(b) :=b, F(a*) := a*, F(b*) := b*.

We will show thatF is an isomorphism. For surjectivity it is sufficient to show that the ele-
mentsi, a*, b andb* generate the algebf(? . Again we use thatthe elementsc™  k > 0,

I > 0 form a vector space basis 8f(D)) ([6, Lemma 2]) and that the element§ i €

Z (u~' = u*), form a vector space basis iR(U(1)). Thus a general element e
P(D,)® P(U() ® P(D,) ® P(U(1)) has the form

_ )4 k.l i q m. kn j
/= Z CppiX X~ Qu, Z Cpn, "V @ U
k,1>0,ieZ m,n=0,;j€eZ

f € PO means that there is the restriction
P k—1 i _ q m—n—j Jj
Z Cr it Qu = Z Cm,n, j" ®u’,
k,[>0,ieZ m,n>0,jeZ

q .
m,n,j*

p — 4
Z Cs+l,l,t - Z Cs+t+n,n,t stt €Z. (147)
[>0,s+1>0 n>0,n+s+t>0

which leads to the following condition for the coefficielafg,l,i andc

f € PO has the formf = 2 5.1 Js., Where

_ P I+s _xl t q n-+s—+t *n t 1
o= Z Coppp X XM @, Z i rnnsy vy @u' | e PO
[>0,l4+5s>0 n>0,n+s+t>0
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due to (147). Because of (147) one can write as

p l+s *[ m+s+t *m t
Ssi= Z Cs+l,l,t(x Qu' > Y u)
[>0,l+s>0

§ : k k 1
+ CZthJrn,n,t(x +sx* ® ut yn+ +t *n ® u )
n>0,n+s+t>0

_ Z Cf+l,l,t(xk+é *k ® ut ym+s+ty*m ® ut).
1>0,/+s>0

The identity
(xsxlx*l ® M yS+tyn *n u ) _ as+t+n *nbs+lb*l

which is a direct consequence of the definitiod pi*, b andb*, shows thaf is surjective.

To show the injectivity ofF', we define homomorphismB, , : C{a, a*, b, b*)/J —
P(D, ) ® P(UM) by F,, := xpq o F.Because of keg, Nker y, = {0}, ker FF = {0}
if and only if ker F,, N ker F, = {0}. First let us describe the ideals K&y ,. Let I, and],
be the ideals generated by-laa* and 1— bb*, respectively. From (145) it is immediate
that the algebra&C(a, a*, b, b*)/J) /1, , are isomorphic taP (D, ,) ® P(U(1)), where
the isomorphism{C(a, a*, b, b*)/J) /1, — P(D,) ® P(U(1)) is defined byz - 1® u,
b — x ®1, and the isomorphistC(a, a*, b, b*))/J) /1, — P(D,) ® P(U(1)) is defined
byar»y®1,b— 1Qu.

Moreover, there are automorphismﬁ,s,q P(Dp)@PU1) = P(Dpy)@PU())
defined by

Fy(l®u) :=1®u, F,l®u) :=1®u, Fy(l®u*) :=1®u*,
F,l®u’)=1Qu*, F,x®1:=xQu*, F,(Q1:=yeu,
Fp(x* D =x"Qu, Fq(y* ®1 =y"u".

Letn,, , be the quotient maps with respect to the iddglg. A short calculation shows that

Fpg=Fpqgonpg,

which means keF, , = I, 4. It remains to show, N I, = {0}. There are the following
identities inC(a, a*, b, b*)/J:

(1—aa")a = ga(l — aa"), (1—aa")a* = g ta*(1— ad"),
(1 — bb*)b = pb(1 — bb*), (1 - bb*)p* = p~1p*(1 — bb¥).

From these relations and the definition/gf= ker F), it follows that for f < ker F), there
exists an elemenf such thatf = (1 — aa") f. kerF, has an analogous property with
1—Dbb* instead of 1-aa*. Using that 1~ xx" is not a zero divisor irP (D)) (see [6, Lemma
3]), itis now easy to see thgt € ker F, Nker F is of the formf = (1 —aa")(1— bb*) f.
Thusf =0, i.e. kerF, NkerF, = 0. O
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Using the identificatio®P™ ~ C(a, a*, b, b*)/J, the mappings belonging to the bundle
can be given explicitly

Apw (@) =a®u, Apw (@) =a* @u”, Apw(b) =b®u*,
Apa (b*) =b* Qu, xp@) =1®u, Xq(@) =y®u,
xp@) =1®u", Xq(@) = y* @u’, xp(b) = x ®u*,
Xq(b) =1®@u™, xp(0*) =x* Qu, X" =1Q®u,

t(f1) = ba, ((f-1) = a*b*, t(fo) = bb".

One easily finds the classical points, i.e. the characters, dt#hgebraC(a, a*, b, b*)/J.
They are given by

Doy, (a) = €%, (148)
L6162 (b) = 102 (149)

with 61, 62 € [0, 2). Thus, the space of classical points can be identified with the two-torus
T2. As a consequence, the total space algebra oftoiy-bundle is nonisomorphic to
P(SY,(2)), whose space of classical points §8. This nonisomorphy also extends to

a possibleC*-closure. Therefore, our bundle is nonisomorphic to the quantum principal
U (1)-bundle used by Brzeaski and Majid ([2,3]) whose total space algebr®iSU, (2)).

This will remain true also if one goes to& -completion, where the basis algebras would
coincide. On the other hand, the bundle considered here is a natural analogue of the classical
U (1)-Hopf bundle from a topological point of view. It is by definition a gluing of two
quantum solid tors* x D, , along their “boundaryT? of classical points, and the gluing

on this boundary is exactly the same as in the classical case, formulated in terms of the
pull-backs of the classical gluing maps.

We also note that the total space algeB¥& of our bundle seems not to have a Hopf
algebra structure in an obvious way, which is also in contrast with the example of [2], where
the total space algebra B(SU, (2)).

In the casep = ¢ = 1, the algebra becomes commutative and only the reldfion
aa*)(1 — bb*) = 0 remains. It is easy to see that this relation, together with the natural
requirementa| < 1, |b| < 1, describes a subspaceRff homeomorphic t&s3. The right
U (1)-action is a simultaneous rotationdanandb, and the orbit through = 0 is the fibre
over the top(0, 0, 0) of the base space (see the discussion in [6]).

To build a connection on the locally trivial QPFB®, first we have to construct
an adapted covariant differential structure. By Definition 4, the adapted covariant dif-
ferential structure is determined by differential calchli P (D,)) andI"(P(D,)) and a
right-covariant differential calculus'(P (U (1)) on the Hopf algebra (U (1)).

As the differential calculi” ((P (D, 4)) on the quantum disd8,, ,, we choose the calculi
already used in [6]) (see [23,25]). The differential idgaP (D) C $2(P(D,)) determin-
ing I'(P(D,)) is generated by the elements

x(dx) — p~Ldxx, x*(dX*) — p(dx)x*,
x(dx*) — p~L(dx)x, x*(dx) — p(dxx*.
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Replacingx by y and p by ¢, one obtains the differential ided P (D,;)) C $2(P(Dy))
determining” (P (Dy)). The corresponding calcultll“sz(P(qu(ﬁ)) onthe basis was explicitly
described in [6]. Furthermore, we use the right-covariant differential calgt{ui U (1)))
determined by the right ided generated by the element

u+vu*—A+v)1,

where 0 < v < 1. One easily verifies thak fulfills (49). Thus, the differential ideal
J(P(S1)) is generated by the sets (50)—(52). Using these generators in the present case one
obtains the following relations if, (P (S1)):

(du)u = u(du®), (du)u = vu(du®),
AU = pudu®),  (duu = qudu®).

Thereforedu* = du = 0 if at least one of the numbers p, g is different from 1. Then,
the LC-differential algebra*m(P(quq&)) has the following form:

TP (S5es) = P(Shep). T (P(Sgs)) = I"(P(Dp)) & I (P(Dy)), n > 0.

F(P(Sé )) coincides withl, (P(qud))) for p # ¢, and is embedded as a subspace defined
by the g%ing forp = ¢ (cf. [6]).

Now, we want to construct a connection on the burfa{€ which can be regarded as a
guantum magnetic monopole with strength- —%.

The functionalst and f on P (U (1)) corresponding to the basis elemémnt- 1) + R €
kere/R are given by

Xwy=1  XwH=-v1  fw=v, f@H=v1

fhky = fn) fk), h ke PUQD), X(hk = X () f (k) + (W) X (k).
X is a linear basis in the space of functionals annihilating 1 and the right Riésde also
Appendix A and [27]), i.eX is a basis of the-deformed Lie algebra corresponding to the

differential calculus orU (1). We define the linear maps;, : (U(1)) — I'(P(D))) and
Ap, : P(U(1)) — I'(P(Dy)) corresponding to a left connection &1Y by

Ap(h) = X (W) 3(xdX — x*dx), h e P(U(1), (150)
Ap(h) = X(W)(y*dy—ydy"), h e P(U(D)). (151)

Because o’ (R) = 0 andX'(1) = 0, A;, andA, fulfill the conditions (70) and (98). Since
there is no gluing i }(B), the condition (71) is also fulfilled. Therefore, any choice of
one-forms to the right oft’ gives a connection.

A short calculation shows (see formula (125)) that the linear nfaps P(U(1)) —
r'?(P(Dy)) andF, : P(U(1)) — I'’(P(D,)) corresponding to the curvature have the
following form:

Fi(h) = X() 5 (1+ p)dxdX + Y X (7)) X (h(2)) £5(xx" — px'x)dxdx,

Fa(h) = —X(h) 31+ g)dydy' + Y X (k@)X (h2){5(yy* — ay*y)dydy.



158 D. Calow, R. Matthes/Journal of Geometry and Physics 41 (2002) 114-165

In the classical case, the local connection forms and A;, can be transformed, using
suitable local coordinates, from the classical unit discs to the upper and lower hemispheres
of the classicals?. The resulting local connection forms @it just coincide with the
well-known magnetic potentials of the Dirac monopole of cha%@ To explain this we
will briefly describe the classical Dirac monopole (see [19]). The classical Dirac monopole
is defined oriR3\ {0}, which is of the same homotopy type $& The corresponding gauge
theory is aU (1) theory, and the Dirac monopole is described as a connectionldfla
principal fibre bundle oves?.

Let {Un, Us} be a covering ofs2, where Uy respectivelyUs is the closed northern
respectively southern hemisphefé, N Us = S1. One can writeUy and Us in polar
coordinates (up to the poles)

n = {@.9).
Us={@.9).

0< % 0§¢><271}U{N},
%<9 i, 05¢<2n}u{3}.

By
eD(@) =expling), 0<¢ <27, nelZ

a family of transition funcuong(”) S — U(1),n € Zis given. A standard procedure
defines a corresponding family 6f(1) principal fibre bundleg® ™.

Letg : ST — U;,i = N, S bethe embedding defined by(¢) = (r/2, ¢). Aconnection
on Q™ is defined by two Lie algebra valued one-formg and As fulfilling

EN(AN) = E5(As) +indp.

The Wu-Yang forms defined by
AV =iln@ - cost)dg, AL = —iln(1+ coso)de

fulfill these condition.Af\j’) and A(S”) are vector potentials generating the magnetic field
B = (3n)(7/|F|®), which is interpreted as a monopole of strength
The classical analogu@™ of the locally trivial QPFBP ™ constructed above isté(1)

principal fibre bundle over a space constructed by gluing together two discs along their
boundaries. A dis® can be regarded as a subspac€ of

The space resulting from gluing together two copieobver ST = {x € D|xx* = 1}
is topologically isomorphic to the sphes®. Everyx € S! has the formx = exp(i¢),

0 < ¢ < 27. The classical/(1) bundlesP™ are given by transition functiongs :

$1 — U(1), which are obtained byl(;) = (”))* (x means here pull-back) from the above
transition functions of QPFB. The exchange of the indices comes from formula (15). One
hasg\s (exp(ip)) = exp(—ing), n € N. Obviously, theP™ are topologically isomorphic

to Q.
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The classical analogue of the connectior/ defined above is given by the following
one-forms onD (see (150) and (151)):

Ay = F(xdX — x*dx), Az = Z(x*dx— xdx").

Let£ : ST — D be the embedding. A short calculation shows thaand A fulfill
§%(A1) = £§%(A2) —id¢.

Now, one defines the following mapg : Un \ {N} — D andns: Us\ {S} — D by
N, ¢) = /1— cosd expig),  ns(B, ¢) = v/1+ cosd explig),

and one easily verifies

-1 -1
ATY = niA), ASY = ni(Ag).

6. Final remarks

We have developed the general scheme of atheory of connections on locally trivial QPFB,
the main results being the introduction of differential structures on such bundles and the
characterization of connections in terms of local connection forms. Here, we make some
remarks about questions and problems arising in our context, and about possible future
developments.

1. Itisveryimportanttolook for more examples. Our examplelst &) bundle over a glued
guantum sphere is very similar to the example mentioned in [4] &E/(2) bundle
over an analogous glued quantum sphere. Indeed, in [4] another quantum disc is used,
which is isomorphic on th€*-level to the disc used in our paper — bath-algebras are
isomorphic to the shift algebra. &*-version of our bundle can therefore be expected to
be isomorphic to thé&/ (1)-subbundle of th&U, (2)-bundle of [4] which in turn already
determines the latter bundle by the main theorem of [4] (which says that a QPFB with
structure groug is determined by a bundle with the classical subgrouf af structure
group). For other examples, one has to look for algebras with a covering (or being a
gluing) such that the;; are “big enough” to allow for nontrivial transition functioms :
H — Bj : Bj mustcontainin their centres subalgebras being the homomorphic image of
the algebrd{ . This seems to be possible onlyHfhas nontrivial classical subgroups and
Bjj contains suitable classical subspaces, asin our example. The following (almost trivial)
example of a gluing along two noncommutative parts indicates that one may fall back to
a gluing along classical subspaces in many casesAlet C*(&) @, C*(6) = Az be
two copies of a quantum sphere being glued together from shift algebras via the symbol
mapo, as described in [6]. Then, the gluinty @pr,, A2 ‘= {((a1, a2), (a7, a3)) €
A1 @ Azlaz = a}} (gluing of two quantum spheres along hemispheres) is obviously
isomorphic tof(as, az, az) € C*(&) & C*(6) & C*(6)|o(a1) = o(az) = o(az)} =
C*(6) &, C*(6) &, C*(6). This is a glued quantum sphere with a (quantum disc)
membrane inside, glued along the classical subspaces. (This corresponds perfectly to
the classical picture of gluing two spheres along hemispheres.)
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2. The permanent need to work with covering completions is an unpleasant feature of the
theory. It would therefore be very important to find some analogue of algebras of smooth
functions in the noncommutative situation which have a suitable class of ideals forming
a distributive lattice with respect tp andn (cf. [6, Proposition 2]). Itis not clear if such
a class exists even in classical algebras of differentiable functions.

3. Principal bundles are in the classical case of great importance in topology and geometry.
In the above approach, one could, e.g. ask for characteristic classes (trying to gener-
alize the Chern—Weil construction), and for a notion of parallel transport defined by a
connection.

4. For locally trivial QPFB, a suitable notion of locally trivial associated quantum vector
bundle (QVB) exists ([7]). QVB are defined via cotensor products. One can introduce
differential structures on QVB such that one has the usual correspondence between
vector valued horizontal forms (of a certain “type”) on the QPFB and sections of the
associated bundle. To a connection on a QPFB one can associate connections on the
corresponding QVB.

5. The notion of gauge transformation in our context is considered in [8]. Gauge trans-
formations are defined as isomorphisms of the left (rightthoduleP, with natural
compatibility conditions. It turns out that the set of covariant derivatives is invariant
under gauge transformations, whereas connections are not always transformed into con-
nections.

6. The relation of our approach to other existing approaches to quantum principal bundles
still has to be investigated. In particular, it seems not to be obvious that in our context
the canonical map is bijective. This has to be shown as a starting point for a comparison
with approaches using Hopf—Galois extensions ([2,14,22,24]). On the other hand, our
approach has many similarities to that of [20], which uses methods of sheaf theory.
Indeed, every algebra with a covering yields a presheaf of algebras. The underlying
topological space is the (finite) index set of the covering, with the discrete topology,
and the algebras related to open subsets are gluings restricted to such index subsets.
Our choice of tensor products as models of trivial bundles is more special than taking
crossed products. However, our approach to differential calculi and connections relies
on the simpler structure of tensor products.

Acknowledgements

We like to thank P.M. Hajac for interesting discussions and valuable remarks, and we
thank the referee for suggesting several improvements.

Appendix A

The purpose of this appendix is to collect some results about covariant differential calculi
on quantum groups ([5,17,27]) and about coverings and gluings of algebras and differential
algebras [6].
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A.1. Covariant calculi on Hopf algebras

We freely use standard facts about Hopf algebras:, andS denote comultiplication,
counitand antipode, respectively. We use the Sweedler notatiot@.p= ) 11y Qh(2)),
and we assume that the antipode is invertible.

A differential algebra over an algebi is a N-graded algebrd™ (B) = ®;cnI (B),
r°«(B) = B, equipped with a differentiaf, i.e. a graded derivative of degree 1 with
d? = 0. It is called differential calculus if it is generated as an algebra bydthé <
B. A differential ideal of a differential algebra is&invariant graded ideal. There is al-
ways the universal differential calculyg(B) determined by the property that every dif-
ferential calculus™"(B) is of the formI"(B) ~ $£2(B)/J(B) for some differential ideal
J(B).

If two algebrasA, B and differential algebrag (A), I'(B) are given, an algebra homo-
morphismy : A — B is said to be differentiable with respect f&(A), I"(B), if there
exists a homomorphismy : I'(A) — I'(B) of differential algebras extending (cf.
[21]). ForI"(A) = £2(A) this extension, denoted in this caseiby_, -, always exists. If,
in addition,I" (B) = £2(B), the notatiorny; is used.J (B) = keridg_, i is a differential
ideal J(B) C £2(B) such thatl"(B) = £2(B)/J(B). J(B) is called the differential ideal
corresponding td"(B).

Now, we list some facts about covariant differential calculi.

Definition 13. Adifferential calculug™ (H) over a Hopf algebr#/ is called right-covariant,
if I"'(H) is arightH comodule algebra with right coactian’ such that

A" (hodhy - - dh,) = A(ho)(d ®id) 0 A(h1) - - (d ®id) 0 A(hy). (A1)

I'(H) is called left-covariant, if" (H) is a left H-comodule algebra with left coactidna
such that

T A(hodhy - - - dh,) = A(ho)(id @ d) 0 A(h1) - - - (id ® d) o A(hy). (A.2)
I’ (H) is called bicovariant if it is left- and right-covariant.

Because of the universality property the universal differential calculus over any Hopf algebra
is bicovariant. In the sequel, we list some properties of right-covariant differential calculi.
The construction of left-covariant differential algebras is analogous.

Let A% be the right coaction of the universal differential calcuieéH) and let/" (H)
be a differential algebra over the Hopf algeléfal” (H) is right-covariant if and only if the
corresponding differential idedl(H) C $2(H) has the property

A% (J(H)) Cc J(H) Q H.

Let us consider a right-covariant differential calculigéH). Let Fi%V(H) ={y e I'(H)|
AT (y) = ¥y ® 1}. There exists a projectioR : I''(H) — I'% (H) defined by

inv

P(h%dht) = Z SRy hin)hydhy).
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Now, one can define a linear map : H — I''(H) by
nr(h) = P(dh) =Y S Y (h)dhg).

By an easy calculation one obtains the identity= " (25 (h(1)). The linear map; -
has the following properties:

AT (r) =nrh) ®1, nr(Wk =Y ko (- (hkay) — e()nr (k).
dnr(h) == nrh@)nrha).

In the casd™(H) = £2(H), we use the symboa,;.

The first degrees of right-covariant differential algebras are in one-to-one correspondence
torightidealsk C kere C H inthe following sense. First, if a differential calculus is given,
R := kernp Nkere is a right ideal with the propertR c kere, and one can prove that
the subbimodule/1(H) corresponding ta™1(H) = 21(H)/J1(H) is generated by the
spaceno(R) = {3 S‘l(r(g))dr(1)|r € R}. On the other hand, every right ideRlC kere
defines a right-covariant differential algelrd H) = 2(H)/J(H), where the differential
ideal J(H) C £2(H) is generated by the sef (R). Analogously, right ideal® C kere
also correspond to left-covariant differential calculi. In this case, the differential idég)
corresponding taR is generated by} S(r))dr)|r € R}. Bicovariant differential cal-
culi are given by right ideals with the property) " S(ra))r@ @ re € H ® RVr €
R (Ad-invariance).

Assuming that keg/R is finite dimensional one can choose a linear bagis- R in
kere/R. This leads to a set of functionals on H annihilating 1 andR such thaty (k) =
Y iXi(hnr(hi), h € H. The set of the elementg-(h;) is a left and right module basis
in 'Y(H), and the set of th&; is a linear basis in the space of all functionals annihilating 1
andR. Itis obvious thatth =Y k) X; (h1))nr (h;). Besides the functionals; the linear
basis in kee /R determines also functional§ on H satisfying

=8 fitk=>fwfic. Xk = X fi®k +emXi@).
1 1

Definition 14. Let A be a vector space and I&t be a Hopf algebra such that there exists
linear mapAy : A - A® H. Ay is called rightH-coaction andA is called rightH
comodule if

(Ar®id)o Ay = (id® A) o Ay, (A.3)
(d®e)oAs =id. (A.4)

If Ais an algebra andi4 is an homomorphism of algebras thdnis called a rightH
comodule algebra. The left coaction is defined analogously.

The definition of covariant differential calculi over Hopf algebras is easily generalized
to H comodule algebras.

Definition 15. A differential calculusl"(A) over a rightH comodule algebra is called



D. Calow, R. Matthes/Journal of Geometry and Physics 41 (2002) 114-165 163

right-covariant if the right coactiomg : I'(A) — I'(A) ® H defined by
Af(aodal ---da,) = Aa(ap)(d ®id) o Ax(ar) -+ (d ®id) o Aa(an) (A.5)

exists.

The universal calculug (A) is always right-covariant, with right coaction denotedzbﬁ.
A differential algebra™(A) overA is right-covariant if and only ifﬂf JA) CJAH
for the differential ideal/ (A) corresponding ta"(A).

A.2. Covering and gluing

Let finite families(B,-)ieI, (Bij), jerx1\p, D the diagonal in/ x I, Bj = Bjj, and
homomorphisms’; : B; — Bjj be given. Then, the algebra

B = {(bi)iel € ®B;
L

mi(bn) =7 (b)) Vi # j} = ©B;
T
is called gluing of theB; along theBjj by means of ther!. Special cases of gluings arise
from coverings. A finite covering of an algebsais a finite family (J;);c, of ideals inB
with N; J; = 0. Taking nowB; = B/J;, Bj = B/(J; + J}), 71;. . B; — Bjj the canonical
projectionsh + J; — b + J; + J;, one can form the gluing
BC = @Bla

7j
which is called the covering completion &f with respect to the coveringJ;);c;. B is
always embedded iB; via the mapK : b — (b + J;);e;. The coveringJ;);<; is called
complete ifK is also surjective, i.eB is isomorphic toB.. Every two-element covering is
complete, as well as every covering oC&-algebra. On the other hand,Bf = @_; B; is

a general gluing, ang; : B — B; are the restrictions of the canonical projectfons, then
(ker p;);cs is a complete covering a8.

If I"'(B) is a differential algebra, a coverind;);c; of I'(B) is said to be differentiable
if the J; are differential ideals. A differential algebva(B) with differentiable covering
(Ji)ier is called LC-differential algebra (LC : locally calculus), if the factor differential
algebrag ™ (B)/J; are differential calculi oveB/Jl.0 (J,.O the degree zero component.bj
andJ? # 0,Vi.

Definition 16. Let (B, (J;)ic;) be an algebra with complete covering, Bt= B/ J;, let
7; © B — B; bethe natural surjections, and Ié{B) andI" (B;) be differential calculi such
thats; are differentiable antkerr; );<; is a covering of " (B). Then(I"(B), (I"(B;))icr1)
is called adapted toB, (J;)icr)-

The following proposition is essential for Definition 4.

Proposition 22. Let (B, (J;)ier) be an algebra with complete covering, and i&tB;) be
differential calculi over the algebraB;. Up to isomorphy there exists a unique differential
calculusr"(B) such that(I"(B), (I"(B;))ier)) is adapted ta B, (J;)icr)-
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As shown in [6], the differential ideal corresponding fgB) = $2(B)/J(B) is just
J(B) = Nierkermio_,r.

Finally, there is a proposition concerning the covering completion of adapted differential
calculi.

Proposition 23. Let (I"'(B), (I'(B;))ic;) be adapted tdB, (J;);c;). Then, the covering
completion ok I"(B), (kerm;)ier) is an LC-differential algebra oveBc.
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